REMARK ON INVARIANT MEANS
ROBERT KAUFMAN

In this note \(G \) is an abelian group and \(m \) is generically an invariant mean in \(G \), as defined, for example, in [4]. Probabilistic arguments [Baire's theorem] are applied to the measure [topological] space \(2^G \) to obtain information about the means \(m \). One result, which appears to be new, is an answer to a problem set by R. G. Douglas [2]:

If \(2G \) is infinite, not every invariant mean \(m \) is inversion invariant.

The space \(2^G \). The family \(\{S\} \) of subsets of \(G \) may be identified in the familiar way with the set of all functions on \(G \) to \(\{0, 1\} \) and provided with the product topology; \(2^G \) is metrizable if \(G \) is countable. Since \(\{0, 1\} \) is a probability space (the details may safely be suppressed), \(2^G \) may be provided with the product measure \(\mu \), even if \(G \) is uncountable; it is sufficient in the present case to regard this measure \(\mu \) as a Baire measure in \(2^G \). For details of the construction see [3, §38]. As to the way this measure is actually used here, we observe that if \(F \) is a subset of \(G \) containing exactly \(n \) elements, \(\mu \{S: F \subseteq S\} = 2^{-n} \).

Lemma 1. Let \(f \) be a bounded real function on \(G \) such that for every finite set \(F = \{a_1, \ldots, a_n\} \) in \(G \) (\(n \) may depend on \(F \)), \(\sup \sum_{i=1}^{n} f(x+a_i) \geq n \). Then for some invariant mean \(m \), \(m(f) \geq 1 \).

Proof. Let \(B(G) \) be the Banach space of real bounded functions on \(G \) and \(B_0(G) \) the subspace generated by functions \(h_a - h \); by definition \(h_a(x) = h(x+a) \). Let \(N \) be the set of nonpositive functions in \(B(G) \), and for each \(g \) in \(B(G) \) define \(\omega(g) \) to be the norm-distance of \(g \) from the convex set \(B_0(G) + N \). Then \(\omega \) is subadditive and positive-homogeneuous, while the argument in [4, §17.5] shows that \(\omega(f) \geq 1 \). By the Hahn-Banach theorem there is a linear functional \(\lambda \) on \(B(G) \) for which \(\omega(F) \geq \lambda(f) \). Then \(\lambda \) is positive, translation invariant and has norm at most 1 as required.

Corollary. If \(S \) and \(T \) are subsets of \(G \), in order that there exist an invariant mean \(m \) such that \(m(S) = 1 \), \(m(T) = 0 \), it is necessary and sufficient that to each finite set \(F \subseteq G \) there exist \(x \) such that \(x + F \subseteq S \), \((x + F) \cap T = \emptyset \). (Here \(m(S) = m(\xi_S) \) for \(S \subseteq G \).

Proof. For the necessity, let \(F = \{a_1, \ldots, a_n\} \) and observe that

Received by the editors November 4, 1965.
the set \(\bigcap_{i=1}^{n} (S - a_i) \sim \bigcup_{i=1}^{n} (T - a_i) \) has \(m \) measure 1 and is thus non-empty. For the sufficiency, apply the previous lemma to the function \(f = \xi_S - \xi_T \), observing that \(m(S), m(T) \in [0, 1] \).

Lemma 2a. Let \(F \) be a finite subset of \(G \) and \(U = \{(S, T) \in 2^G \times 2^G : \text{for some } x, x + F \subseteq S, (x + F) \cap T = \emptyset \} \). Then \(U \) is an open set; if \(G \) is infinite, \(U \) is dense and contains an open Baire set of \(\mu \times \mu \) measure 1.

Proof. Since \(F \) is finite, \(U \) is presented as the union of open sets and is thus open. We now assume \(G \) is infinite and choose a sequence \(\{x_i : i \geq 1\} \) in \(G \) such that \(x_i - x_j \notin F - F \) if \(i \neq j \). The complement of \(U \) belongs to the closed Baire set

\[
\bigcap_{i=1}^{\infty} \left\{ (S, T) \in 2^G \times 2^G : x_i + F \not\subseteq S \text{ or } (x_i + F) \cap T \neq \emptyset \right\}.
\]

For each element \(x \) of \(G \) let \(Y_x(S, T) \) be the \(x \)-coordinate of \(S \) and \(Z_x(S, T) \) the \(x \)-coordinate of \(T \). The random variables \(Y_x, Z_x, x \in G \), are jointly independent [3, §45] for the measure \(\mu \times \mu \), and consequently the sets enclosed in braces are jointly independent for distinct indices \(i \). Since each of these sets has the same measure \(<1\), the intersection has measure 0. (If \(F \) has \(r \) elements, the measure of each set in braces is exactly \(1 - 2^{-2r} \).) Moreover \(U \) is dense, since any open subset in \(2^G \times 2^G \) contains an open Baire set of positive measure.

Corollary. If \(G \) is countably infinite, then for almost all pairs \((S, T)\) there is an invariant mean \(m \) such that \(m(S) = 1 \), \(m(T) = 0 \), and an invariant mean \(m' \) such that \(m'(T) = 1 \), \(m'(S) = 0 \). The pairs with this property are a dense \(G_\delta \).

Proof. Observe that the finite subsets of \(G \) may be enumerated and apply Lemma 2a and the Corollary to Lemma 1.

Lemma 2b. If \(F \) is a finite subset of \(G \) then \(V = \{S \in 2^G : x + F \subseteq S, (x + F) \cap -S = \emptyset \text{ for some } x \text{ in } G \} \) is open. If \(2G \) is infinite, \(V \) is dense and contains an open Baire set of \(\mu \) measure 1.

Proof. That \(V \) is open is clear. If \(2G \) is infinite there is a sequence \(\{x_i : i \geq 1\} \) in \(G \) such that \(x_i + x_j \notin F - F \) for all \(i, j \geq 1 \) and \(x_i - x_j \notin F - F \) for \(i > j \geq 1 \). The complement of \(V \) is contained in the closed Baire set

\[
\bigcap_{i=1}^{\infty} \left\{ S \in 2^G : x_i + F \not\subseteq S \text{ or } -(x_i + F) \cap S \neq \emptyset \right\}.
\]

The proof now follows that of Lemma 2a.
Corollary. If G is countably infinite and $2G$ is infinite, the sets $S \subseteq 2^G$ for which $m(S) = 1$, $m(-S) = 0$ for some invariant mean m form a dense G_6 of measure 1.

Theorem 3. If G is infinite, there is more than one invariant mean for G. If $2G$ is infinite, G has invariant means which are not inversion invariant.

Proof. If G is infinite, let ϕ be a homomorphism of G onto a countably infinite group. An invariant mean on $\phi(G)$ may be construed as an invariant mean on the field of subsets of G generated by cosets of the kernel of ϕ. According to [4, §17.14] any such set function admits an extension to an invariant mean. Since $\phi(G)$ has many invariant means, so also does G. The existence of many invariant means was first proved by Day [1].

If $2G$ is infinite, let ψ be a homomorphism of $2G$ onto a countable infinite group, H a countable divisible group containing $\psi(2G)$ and ϕ, an extension of ψ, which maps G into H. Then $\phi(G)$ is countable, $2\phi(G) = \phi(2G)$ is infinite. Because $\phi(G)$ has invariant means which are not inversion invariant, so also does G, by the argument just stated.

To obtain the converse to the second statement of the theorem, set $f^\sim(x) = f(-x)$ and $2G = \{a_1, \ldots, a_n\}, n < \infty$. For a bounded function f and invariant mean m

$$m(f^\sim) = m\left(\frac{1}{n} \sum_{i=1}^{n} f_{a_i}^\sim\right);$$

$$\frac{1}{n} \sum_{i=1}^{n} f_{a_i}^\sim(x) = \frac{1}{n} \sum_{i=1}^{n} f(-x - a_i).$$

The identity $-x - 2G = x + 2G$ shows that

$$\frac{1}{n} \sum_{i=1}^{n} f_{a_i}^\sim = \frac{1}{n} \sum_{i=1}^{n} f_{a_i},$$

and so $m(f^\sim) = m(f)$.

References

University of Illinois