Differentiability of sample functions in Gaussian processes
HTML articles powered by AMS MathViewer
- by J. Yeh
- Proc. Amer. Math. Soc. 18 (1967), 105-108
- DOI: https://doi.org/10.1090/S0002-9939-1967-0203823-8
- PDF | Request permission
References
- J. L. Doob, Stochastic processes depending on a continuous parameter, Trans. Amer. Math. Soc. 42 (1937), no. 1, 107–140. MR 1501916, DOI 10.1090/S0002-9947-1937-1501916-1 A. N. Kolmogoroff, Grundbegriffe der Wahrscheinlichkeitsrechnung, Ergebnisse der Mathematik, No. 3, (1933). M. Loève, Probability theory, Princeton Univ. Press, Princeton, N. J., 1963.
- Peggy Tang Strait, Sample function regularity for Gaussian processes with the parameter in a Hilbert space, Pacific J. Math. 19 (1966), 159–173. MR 198537 N. Wiener, Differential space, J. Math. and Phys. 2 (1923), 131-174.
- Norbert Wiener, Generalized harmonic analysis, Acta Math. 55 (1930), no. 1, 117–258. MR 1555316, DOI 10.1007/BF02546511
Bibliographic Information
- © Copyright 1967 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 18 (1967), 105-108
- MSC: Primary 60.40
- DOI: https://doi.org/10.1090/S0002-9939-1967-0203823-8
- MathSciNet review: 0203823