Some generalizations of Opial’s inequality
HTML articles powered by AMS MathViewer
- by James Calvert
- Proc. Amer. Math. Soc. 18 (1967), 72-75
- DOI: https://doi.org/10.1090/S0002-9939-1967-0204594-1
- PDF | Request permission
References
- Paul R. Beesack, On an integral inequality of Z. Opial, Trans. Amer. Math. Soc. 104 (1962), 470–475. MR 139706, DOI 10.1090/S0002-9947-1962-0139706-1
- N. Levinson, On an inequality of Opial and Beesack, Proc. Amer. Math. Soc. 15 (1964), 565–566. MR 166315, DOI 10.1090/S0002-9939-1964-0166315-8
- C. L. Mallows, An even simpler proof of Opial’s inequality, Proc. Amer. Math. Soc. 16 (1965), 173. MR 170989, DOI 10.1090/S0002-9939-1965-0170989-6
- Z. Olech, A simple proof of a certain result of Z. Opial, Ann. Polon. Math. 8 (1960), 61–63. MR 112927, DOI 10.4064/ap-8-1-61-63
- Z. Opial, Sur une inégalité, Ann. Polon. Math. 8 (1960), 29–32 (French). MR 112926, DOI 10.4064/ap-8-1-29-32
- R. N. Pederson, On an inequality of Opial, Beesack and Levinson, Proc. Amer. Math. Soc. 16 (1965), 174. MR 170990, DOI 10.1090/S0002-9939-1965-0170990-2
Bibliographic Information
- © Copyright 1967 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 18 (1967), 72-75
- MSC: Primary 26.70
- DOI: https://doi.org/10.1090/S0002-9939-1967-0204594-1
- MathSciNet review: 0204594