for \(n = k + 1 \) if it holds for \(n = k \). Hence, by induction, it holds for every \(n \).

Acknowledgment. The author is indebted to B. McMillan for stimulating discussion.

References

Bell Telephone Laboratories, Inc., Murray Hill, New Jersey

SOME GENERALIZATIONS OF OPIAL’S INEQUALITY

JAMES CALVERT

The inequality \(\int_0^a |uu'| \leq a/2 \int_0^a |u'|^2 \) which is valid for absolutely continuous \(u \) with \(u(0) = 0 \) has received successively simpler proofs by Opial, [5], Olech [4], Beesack [1], Levinson [2], Pederson [6], and Mallows [3]. It is the purpose of this paper to use the method of Olech to obtain some more general inequalities.

Theorem 1. Let \(u \) be absolutely continuous on \((a, b)\) with \(u(a) = 0 \), where \(-\infty \leq a < b < \infty\). Let \(f(t) \) be a continuous, complex function defined for all \(t \) in the range of \(u \) and for all real \(t \) of the form \(t(s) = \int_0^s |u'(x)| \, dx \). Suppose that \(|f(t)| \leq f(|t|) \), for all \(t \), and that \(f(t_1) \leq f(t_2) \) for \(0 \leq t_1 \leq t_2 \). Let \(r \) be positive, continuous and in \(L^{1-q}[a, b] \), where \(1/p + 1/q = 1, p > 1 \). Let \(F(s) = \int_0^s f(x) \, dx, s > 0 \). Then

\[
\int_a^b |f(u)u'| \, dx \leq F \left[\left(\int_a^b r^{1-q} \right)^{1/q} \left(\int_a^b r \, u'|^p \right)^{1/p} \right]
\]

with equality iff \(u(x) = A f_0^{b} r^{1-q} \). The same result (but with equality for \(u(x) = \int_0^b r^{1-q} \)) holds if \(u(b) = 0 \) and \(-\infty < a < b \leq \infty\).

Received by the editors July 5, 1966.
Proof. Let \(z(x) = \int_a^x |u'| \),
\[
\int_a^b |f(u(x))u'(x)| \, dx = \int_a^b |f \left(\int_a^x u' \right) u'(x)| \, dx
\]
\[
\leq \int_a^b f \left(\left| \int_a^x u' \right| \right) |u'(x)| \, dx
\]
\[
= \int_a^b f(z)z^p \, dx = F(z(b)),
\]
\[
z(b) = \int_a^b z' = \int_a^b r^{-1/p}r^{-1/p} = \left(\int_a^b r^{-q} \right)^{1/q} \left(\int_a^b r^p \right)^{1/p}.
\]
The result follows with the observation that \(F \) is nondecreasing.

Example. Let \(f(t) = t^{p-1}, p > 1, u(a) = 0, -\infty < a < b < \infty \), then
\[
\int_a^b |u^{-1}u'| \leq (1/p) \left(\int_a^b r^{-q} \right)^{p-1} \int_a^b r \, |u'|^p
\]
with equality iff \(u(x) = A \int_a^x r^{1-q} \). For \(p = 2 \), we obtain essentially Bee-
sack's generalization \([1]\).

Example. Let \(f(t) = \sum_{n=0}^{\infty} a_n t^n \) be an absolutely convergent power series with radius of convergence \(R \). Let \(F(s) = \int_a^b \sum_{n=0}^{\infty} |a_n| x^n dx \). If \(\int_a^b |u'| < R \), then the theorem is true with this choice for \(f \) since
\[
\int_a^b f(u)u' \leq \int_a^b \sum_{n=0}^{\infty} |a_n| |u| |u'| \text{ and the function } g(t) = \sum |a_n| t^n
\]
has the properties \(g(t) \leq g(|t|) \), \(g(t_1) \leq g(t_2) \) when \(0 \leq t_1 \leq t_2 \).

Corollary. If \(F(t+s) \geq F(t) + F(s) \) for \(t, s \geq 0 \) and if \(u(a) = u(b) = 0 \) for \(-\infty < a < b < \infty \), then
\[F(\xi) = F(\xi) + F(\xi) \text{ where } \lambda = (\int_a^b r^{1-q})^{p-1} = (\int_a^b r^{1-q})^{p-1} \text{ and } \xi \text{ is the uniquely determined point where the two integrals are equal. Equality holds iff}
\]
\[
u(x) = A \int_a^x r^{1-q}, \quad a \leq x \leq \xi
\]
\[
= A \int_\xi^b r^{1-q}, \quad \xi \leq x \leq b.
\]

Proof. We have
\[
\int_a^\xi |f(u)u'| \leq F \left[\left(\int_a^\xi r^{1-q} \right)^{1/q} \left(\int_a^\xi r \, |u'|^p \right)^{1/p} \right]
\]
and
\[
\int_{\xi}^{b} |f(u)u'| \leq F \left[\left(\int_{\xi}^{b} r^{1-q} \right)^{1/q} \left(\int_{\xi}^{b} r \left| u' \right|^p \right)^{1/p} \right].
\]

The result follows by adding, using the fact that \(F(s+t) \geq F(s) + F(t) \), and noting the choice of \(\xi \).

Example. For \(r = 1, a \) and \(b \) finite, and \(f(t) = t^{p-1} \) for \(p > 1 \),
\[
\int_{a}^{b} |u^{p-1}u'| \leq (1/p) \left[(b-a)/2 \right]^{p-1} \int_{a}^{b} |u'|^p
\]
with equality for
\[
u(x) = \begin{cases} A(x-a); & a \leq x \leq (a+b)/2, \\ A(b-x); & (a+b)/2 \leq x \leq b. \end{cases}
\]

For \(p=2 \) and \(a=0 \) we obtain Opial's inequality.

Example. Let \(f(t) = t^{p-1} \) for \(p > 1 \) and \(u = v^{1/p} \), then
\[
\max_{t} |v(t)| \leq 1/2 \int_{a}^{b} |v'| \leq (2p)^{-p} (b-a)^{p-1} \int_{a}^{b} |v|^{1-p} |v'|^p
\]

Theorem 2. Let \(u, f, \) and \(r \) be as in Theorem 1. If \(p < 1, 1/p + 1/q = 1, u(a) = 0 \), \(-\infty \leq a < b \leq \infty \), then
\[
\int_{a}^{b} \left| u'/f(u) \right| \, dx \geq G \left[\left(\int_{a}^{b} r^{1-q} \right)^{1/q} \left(\int_{a}^{b} r \left| u' \right|^p \right)^{1/p} \right],
\]
where \(G(s) = \int_{0}^{s} 1/f(x) \, dx \).

Equality holds iff \(u(x) = \int_{a}^{x} r^{1-q} \). If \(u(b) = 0 \), \(-\infty < a < b \leq \infty \), the same result holds.

Proof.
\[
\int_{a}^{b} \left| u'/f(u) \right| = \int_{a}^{b} \left| u' \right| / \left| f \left(\int_{a}^{b} u' \right) \right|
\]
\[
geq \int_{a}^{b} \left| u' \right| / f \left(\int_{a}^{b} u' \right)
\]
\[
= \int_{a}^{b} z'/f(z) = G(z(b))
\]
\[
z(b) = \int_{a}^{b} z' = \int_{a}^{b} r^{-1/p} r^1/p z' \geq \left(\int_{a}^{b} r^{1-q} \right)^{1/q} \left(\int_{a}^{b} r \left| u' \right|^p \right)^{1/p}.
\]

The result follows with the observation that \(G \) is nondecreasing.
Example. For $0 < p < 1$, $f(t) = t^{p-1}$;

$$\int_a^b |u^{p-1}u'| \geq (1/p) \left(\int_a^b r^{1-q} \right)^{p-1} \left(\int_a^b r \ |u'|^p \right).$$

Taking $r = 1$, $p = 1/2$, $u = v^2$, we obtain

$$\int_a^b |vv'|^{1/2} \leq 2^{-1/2}(b-a)^{1/2} \int_a^b |v'|.$$

The next theorem is a generalization of a different sort which can easily be proven by the methods used above.

Theorem 3. If u and v are absolutely continuous for $-\infty \leq a < b < \infty$ and if $u(a) = v(a) = 0$, then

$$\int_a^b |uv'| + |vu'| \leq \left[\int_a^b r^{-2} \int_a^b s^{-2} \int_a^b r^2 |u'|^2 \int_a^b s^2 |v'|^2 \right]^{1/2}$$

with equality iff $u(x) = A \int_a^x r^{-2}$ and $v(x) = B \int_a^x s^{-2}$.

References

University of California, Davis