On a class of polynomials obtained from generalized Humbert polynomials
HTML articles powered by AMS MathViewer
- by David Zeitlin
- Proc. Amer. Math. Soc. 18 (1967), 28-34
- DOI: https://doi.org/10.1090/S0002-9939-1967-0204730-7
- PDF | Request permission
References
- H. W. Gould, Inverse series relations and other expansions involving Humbert polynomials, Duke Math. J. 32 (1965), 697β711. MR 188510 G. SzegΓΆ, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ. Vol. 23, Amer. Math. Soc., Providence, R. I., 1939; reprint 1958.
- John Riordan, An introduction to combinatorial analysis, Wiley Publications in Mathematical Statistics, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1958. MR 0096594
- David Zeitlin, Generating functions for products of recursive sequences, Trans. Amer. Math. Soc. 116 (1965), 300β315. MR 185301, DOI 10.1090/S0002-9947-1965-0185301-0
- David Zeitlin, On solutions of homogeneous, linear, difference equations with constant coefficients, Amer. Math. Monthly 68 (1961), 134β137. MR 123107, DOI 10.2307/2312476
- David Zeitlin, Power identities for sequences defined by $W_{n+2}=dW_{n+1}-cW_{n}$, Fibonacci Quart. 3 (1965), 241β256. MR 224547
Bibliographic Information
- © Copyright 1967 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 18 (1967), 28-34
- MSC: Primary 33.40
- DOI: https://doi.org/10.1090/S0002-9939-1967-0204730-7
- MathSciNet review: 0204730