Representation of $0$ as $\sum ^{N}_{K=-N} \varepsilon _{k}k$
HTML articles powered by AMS MathViewer
- by J. H. van Lint
- Proc. Amer. Math. Soc. 18 (1967), 182-184
- DOI: https://doi.org/10.1090/S0002-9939-1967-0205964-8
- PDF | Request permission
Abstract:
If ${\varepsilon _k}$ are independent identically distributed random variables with values $0$ and $1$, each with probability $\tfrac {1} {2}$ then \[ P\left ( {\sum \limits _{k = - N}^{ + N} {{\varepsilon _k}k = 0} } \right ) \sim {\left ( {\frac {3} {\pi }} \right )^{1/2}}{N^{ - 3/2}}.\]References
- A. Sárközi and E. Szemerédi, Über ein Problem von Erdős und Moser, Acta Arith. 11 (1965), 205–208 (German). MR 182619, DOI 10.4064/aa-11-2-205-208
Bibliographic Information
- © Copyright 1967 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 18 (1967), 182-184
- MSC: Primary 10.25
- DOI: https://doi.org/10.1090/S0002-9939-1967-0205964-8
- MathSciNet review: 0205964