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1. Introduction. Let N denote the set of all nonnegative integers.

The elements in N are represented in the &-adic number system by

strings of integers as aia2 ■ ■ ■ ap, O^a^k — 1. Define a multivalued

function on N by

Y{aia2 ■ ■ ■ ap) = {ai ■ ■ -{a, — 1) • • • ap; 1 — v = p, a, ^ 1}

and T(0) =0, the null set. Puta&(aia2 ■ • • ap) = ^ay, p = 1,2, ■ ■ ■ , p

and a,(5) = £>*(«), ra£S if 5£A.

S is said to be closed if SCN and TSQS. S„ = {0, 1, • • • , »-l}
is closed. The problem is to determine the maximum of ak{S) when

51 ranges over all closed S with \S\ =n, i.e. with ra elements. Our

main result (Theorem 1) is that the maximum is ak{Sn).

ii we put Bk{n) =ak{Sn), we get as a corollary

* k

Bk{mi + m2 + • • • + mk) ^ X Bk(m,) + J2 iv — l)m„

mi = m2 Si  • • • ^ mk = 0.

It is interesting that Theorem 1 can be derived from this inequality.

We have no independent proof of it, except for k = 2.

The asymptotic properties of the function Akin) =£*(«+1) were

studied in [l] by R. Bellman and H. N. Shapiro. ^42(«) appeared

in connection with determinants in [2]. A result in that paper will

be extended in our Theorem 2. We also note that there is some

connection with the "detecting sets" studied in [3]. In fact, it was

an attempt to extend the results in [3] which gave rise to the present

problem.

2. Main results. In this section we shall derive the following theo-

rem:

Theorem 1. If S is closed and \s\ =ra, then aK{S) ̂ ak{S„).

To simplify notations we shall omit the index "k" in the proofs.

Putting 0's in front of a string does not alter the integer repre-

sented by the string. Hence we can assume that all integers in 5 are

represented by strings of the same length p=piS).
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Given SEN, we shall define a set SCEN, called the compression

of S. Let Sr denote the set of all integers nES for which a(n) =v.

Let Scy denote the set of the |S„| smallest nonnegative integers re

for which a(n) = v. Then define Sc as the union of the sets SI,

v = 0, 1, 2, • • • . We note that

(2.1) | 5*| =  | 51;
(2.2) a(Sc) = a(S).

We shall prove a lemma:

Lemma 1. If p(S) = 2 and S is closed, then Se is closed.

Proof. It is instructive to imagine the integers ai<z2£S as points

with coordinates (a\, ai) in a 2-dimensional coordinate-system.

If ai?^0 and a2?^0 for every aia2£S„ (or S°r), then

(2.3) | TS, | ^  | S, | + 1    and    | TSl | =  | S, \ + 1.

This holds surely when v^k.

If there is one and only one integer a&^ES, (or SI) for which

ai or a2 = 0, then we find

(2.4) I rS,| =:  I S, |    and    | FS^i =  \S°,\.

From (2.3) and (2.4) we get in both cases

(2.5) | TSl\ ^  \TS,\.

If there are two integers aia2 for which ai or a2 = 0 then Sy = S°v and

(2.5) holds with equality.

S is closed if and only if TS,CZSr-i for v — \, 2, ■ ■ ■ . Then we find

by (2.1) and (2.5)

| rsl\ ^ \sl-i\,     v = l, 2, • • -.

From this inequality it follows rS^C^-i for ^ = 1, 2, • • • . Hence Sc

is closed and the lemma is proved.

We shall prove a second lemma

Lemma 2. Assume p=p(S)^3 for SEN, and that bib2 ■ ■ ■ bPES,

ai = bi and ai ■ • • a,-_io,-+i • • • ap<bi ■ ■ • &j_i6l+i • ■ ■ bp implies

ai ■ ■ ■ apES for t = l, 2, • • • , p. Then W>2 • ■ ■ bpES, aia2 • ■ ■ ap

<bibi ■ ■ ■ bp and ai+ ■ ■ ■ +ap = &i+ • • • +bp implies aia2 ■ ■ •

apES.

Proof. We can assume ay^br,  l^v^p. Then ai<bu since aia2

■ ■ ■ ap<bibi ■ ■ ■ bp. If there is s=^l such that a,<b„ we get
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61 • • • b, • • • bp > 61 • • • a, • • • aP > ai • • • a, • • • ap.

From these inequalities we find aia2 • • • ap£5 if bib2 • • • bp(ES.

Next we assume aP>b, for v>l. Since ai-\- • • • +ap^bi+ ■ • •

+bp,   we   get   bi — ai^{a2 — b2)+ ■ ■ ■ +{ap — bp) ̂ p — 1 ̂ 2.   Hence

bib2 ■ ■ ■ bp > {bi — l)a2b3 ■ ■ ■ bp > {bi — 2)a2 • • • ap = ata2 ■ ■ • ap.

Then from bib2 ■ ■ ■ &p£5 we conclude aia2 ■ ■ ■ ap£5.

Proof of Theorem 1. The proof is by induction over p=p{S).

If p = l, S = Sn and the theorem is true. Next we assume p = 2. The

compressed set Sc is formed from S. If Sc9^Sn let ata2 be the smallest

nonnegative integer not in Sc and let bib2 be the largest integer in Sc.

Then we find aia2<bib2, ai<bi, a2>b2, for Sc is closed by Lemma 1.

We get even

(2.6) ai + a2 > 61 + b2.

For if ai+a2^bi+b2, we can put c = ai+a2 — b2. Then ai<c^bi and

c&2£5c for Sc is closed. Hence aia2(E.Sc, since ai+a2 = c-|-&2 and Sc

is compressed. But aia2£5c, and (2.6) follows by the contradiction.

If bib2 is deleted from Sc and &ia2 is adjoined to it, we get a new

closed and compressed set £. We find by (2.1) and (2.2)

(2.7) |T| =  \S\,       a{T)>a{S).

Ii T^Sn we can find new integers Oia2 and bj>2. After a finite number

of steps we get 5„, for the sum of all integers in the set is decreased at

each step. By (2.7) the theorem holds for p = 2.

Now we assume that £ is a closed set with p=piT)^3. For ai

fixed we shall consider the set £(ai) = {a2a3 ■ ■ ■ ap; 01O2 ■ ■ • ap££}.

T{ai) is closed and p(£(oi)) =p — 1. By assumption the theorem holds

for £(<ii). Replace £(ai) by a set Sn, n= \ £(ai) |, restore the digit «i

and take union when ai = 0, 1, ■ ■ ■ , k — 1. We get £1 with a(£i)

= a{T). Note that | T{v-1)\ = \ T{v)\, since T is closed. It follows

that £1 is closed. Define T1{a2)= {aia3 ■ • • ap; axa2 ■ ■ ■ ap££i}.

£1(02) is closed. Replace it by a set of type ,<>„, restore the digit a2 and

take union when a2 = 0, 1, • • • , k — 1. T2 is closed and a{T2) ^a{Ti).

Continue with the digits a3, • • • , ap, a\, a2, • ■ • . We get a sequence

of closed sets: T, £1, £2, • • • , for which

(2.8) a(7Wi) = a{Tm),    \ Tm\ -  \T\.

If Tm+i^Tm, then the sum of all integers in £m+i is smaller than

the sum of all integers in Tm. Hence there is an index q such that

£« = £9+1 = • • • = £a+p.
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Then we find that Tq meets the requirements on 5 in Lemma 2. If

Tq^Sn, re = | P|, we can find a minimal da2 • • • ap(£Tg and a maxi-

mal bibi • ■ ■ bpE Tq such that ai ■ ■ • ap<bi ■ ■ ■ bp and, by Lemma 2,

ai + a2 + ■ ■ ■ + aP > bi + h + ■ ■ ■ + bp.

We delete &i&2 ■ ■ • bp from Tq and adjoin aia2 • • • ap to the set. Then

we get a closed set U for which a(U) >a(Tq). U fulfills the require-

ments on S in Lemma 2. If U^Sn we proceed to a new closed set

with larger a-value. After a finite number of steps we get S„. Hence

a(T) ^a(Sn) and the theorem follows by induction over p.

It is interesting to know that Lemma 1 is not valid for p(S) >2.

This is seen by the example:

S = {000, 001, 010, 100, 002, 011, 020, 110, 012, 021, 120},

S° = {000, 001, 010, 100, 002, 011, 020, 101, 012, 021, 111}.

S is closed, but S' is not closed since 110 GTS'1 and llO^S".

Corollary.

* k

Bk(mi + ■ ■ ■ + mk) = Z Bk(mv) + Z (" — !)*»»>
,—1 F—2

«i ^ «j ^ •••=*»* = o.

Bk(mn) S: mBk(n) + nBk(m),       tn, re ^ 1.

Proof. Determine p such that mi g kp and consider the set

*

5 = U {aia2 • • • ap(v — 1); aid ■ ■ ■ ap E SmJ.
>•—i

,S is closed and | -S"f = »»i + • • • +»**> The first inequality follows
if we determine a(S) and apply Theorem 1.

The second inequality follows if we determine p and q such that

m^k" and n^kq and consider the set

X = {ai ■ ■ ■ apbi ■ • • bq; ai ■ ■ ■ ap E Sm, bi ■ ■ • bq E Sn}.

T is closed,   | P| =mn, a(T)=ma(Sn)+na(Sm) and a(T)^a(Smn).

3. Application to determinants. We assume here that k = 2. There

is a one-one mapping from nonnegative integers to sets of nonnega-

tive integers:

re = 2-' + 2»" + • • • + 2"<-r N = {re1; »«,•••, ««},

(3.1) rei > re2 >   • • • > n, £ 0,

O-r0.
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The set-theoretic counterpart to closed set of integers is closed

family of sets: EF is a closed family of sets if NE$, MEN implies

ME$.
Put a(N) = | N\ and a(5) = Z«(^)> NE5. For functions / defined

on a closed family ff, we put

(3.2) /(A) = Z (-l)w/«,

where the sum is taken over all subsets to A. It is easy to verify

(/) * =/. The proof of the following lemma can also be omitted (cf.

[3, p. 481]).

Lemma 3. Iff is defined on a closed family *5, and M, NE$, M(\_N,

Z(-1)|S|/(5HA) =0.
ScM

We shall prove the theorem on determinants:

Theorem 2. Let Nx, A2, • • • , Nn be an enumeration of all sets in a

closed family for which NiENj only if i^j. Then

|/(A\-n Nj)\lj=i = fl (-1)'*<'/(#,■)•
•=i

Proof. Multiply the last row in the determinant by ( —l)1^"1.

If NiENn we multiply the ith row by ( —l)ly<l and add to the last

row. In the last row of the new determinant are all entries 0, except

the last one which is (})*(N„) =f(Nn). The value of the new determi-

nant is (-iyN"t\KNinNj)\lJJl=f(Nn)\}(Nir\Nj)\Ul1. If we note
that Ni = 0 and/(0) =/(0), the theorem follows by induction.

Example. Let f(N) = VNi. Then f(M) = (-l)i*i. It follows that
2<*<5r> equals a determinant with all entries +1 or — 1. If EF is the

family which corresponds to the integers 0,1, • • • , re, we get Theo-

rem 1 in [2].
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