A COMBINATORIAL PROBLEM IN THE
k-ADIC NUMBER SYSTEM

B. LINDSTROM AND H.-O. ZETTERSTROM

1. Introduction. Let N denote the set of all nonnegative integers.
The elements in NV are represented in the k-adic number system by
strings of integers as ai@z - - - @5, 0=<a,<k—1. Define a multivalued
function on N by

M(awaz - - - ap) = {al~--(a,—-1)~--a,;1§u§p,a,g1}
and I'(0) = &, the null set. Put ay(aia: - - - ap) = Za,,, v=1,2,---,p
and ox(S) = Y _ax(n), nES if SCN.

S is said to be closed if SCN and I'SCS. S,= {0, 1, -, n—l}

is closed. The problem is to determine the maximum of ax(S) when
S ranges over all closed S with |S| =, i.e. with n elements. Our
main result (Theorem 1) is that the maximum is ax(.S,).

If we put Bi(n) =ax(S,), we get as a corollary

k k
Bi(my+my+ - - - +m) = E B(m,) + Z (v — m,,
=2

y=1

my = me = - - - = my = 0.

It is interesting that Theorem 1 can be derived from this inequality.
We have no independent proof of it, except for k=2.

The asymptotic properties of the function 4i(n)=Bi(n+1) were
studied in [1] by R. Bellman and H. N. Shapiro. 4s(n) appeared
in connection with determinants in [2]. A result in that paper will
be extended in our Theorem 2. We also note that there is some
connection with the “detecting sets” studied in [3]. In fact, it was
an attempt to extend the results in [3] which gave rise to the present
problem.

2. Main results. In this section we shall derive the following theo-
rem:

TureoreM 1. If S is closed and [Sl =n, then a,(S) <a;(S,).

To simplify notations we shall omit the index “£” in the proofs.

Putting 0’s in front of a string does not alter the integer repre-
sented by the string. Hence we can assume that all integers in S are
represented by strings of the same length p=p(S).
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Given SCAN, we shall define a set S°CN, called the compression
of S. Let S, denote the set of all integers nE&.S for which a(n)=v».
Let S¢ denote the set of the |S,| smallest nonnegative integers n
for which a(n)=». Then define S° as the union of the sets S;,
v=0,1, 2, - - - . We note that

2.1) | s = |51,
(2.2) a(S) = a(S).
We shall prove a lemma:
LeMMma 1. If p(S) =2 and S s closed, then S is closed.

Proor. It is instructive to imagine the integers a1a;E&.S as points
with coordinates (a1, a2) in a 2-dimensional coordinate-system.
If a,50 and a,5%0 for every a1a:E .S, (or S%), then

(2.3) |TS,| 2 [S|+1 and |TS| = ||+ 1.

This holds surely when v k.
If there is one and only one integer a;a:ES, (or S%) for which
a; or a;=0, then we find

(2.4) |TS,| = |S,| and |TS)|=|Si]
From (2.3) and (2.4) we get in both cases
(2.) |rs)| = | s,

If there are two integers aia; for which e, or a;=0 then S,=S; and
(2.5) holds with equality.

S is closed if and only if I'S,CS,_; for v=1, 2, - - - . Then we find
by (2.1) and (2.5)

Itsi| < |Sal, v=1,2,---.
From this inequality it follows I'S;C.S,_; for v=1, 2, - - - . Hence .S¢
is closed and the lemma is proved.

We shall prove a second lemma

LEMMA 2. Assume p=p(S)=3 for SCN, and that bib, - - - b,ES,
a;=b; and ar---0;18i1 - - @p<by - - - biabiyr - - b, implies
ar- - - a, €S for 1=1, 2, - -, p. Then bibs - - - b,ES, awa; - - - a,
<bbz - - -bp and a1+ - - - +a, b+ - - - +b, implies aa, - -
a,ES.

Proor. We can assume q,b,, 1<v=<p. Then a,<b,, since a,a,
© - ap<biby - -+ by If there is s#1 such that a, <b,, we get
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bl...b‘...bp>b1...a‘...ap>al...a‘...ap_

From these inequalities we find @as - - - @, ES if bibs - - - b,ES.
Next we assume a,>b, for v>1. Since a1+ - - - +a, b1+ - - -
+b, we get bi—ar1=(as—by)+ - - - +(a,—by)=p—1=2. Hence

blbz"'bp>(bl—l)azbs"'bp>(61—2)(12"'01,2(11(12"'(1,,.

Then from bidy « - - b, &S we conclude aas - - - ¢, ES.

Proor oF THEOREM 1. The proof is by induction over p=p(S).
If p=1, S=.S, and the theorem is true. Next we assume p=2. The
compressed set S¢ is formed from S. If S¢S, let a,a; be the smallest
nonnegative integer not in S° and let b6, be the largest integer in S¢.
Then we find aya: <bibs, a1 <bi, as>b,, for S¢ is closed by Lemma 1.
We get even

(26) ay + as > by + be.

For if a;+a2:=b,+b,, we can put c=a;+a;—b,. Then a;<c=<b, and
cby & .Se for S¢ is closed. Hence a1a.&S° since a;+a;=c+b; and S°
is compressed. But a1a,&.S¢, and (2.6) follows by the contradiction.

If b1b, is deleted from S° and aja. is adjoined to it, we get a new
closed and compressed set 7. We find by (2.1) and (2.2)

(2.7) |T|= 1S, «@ > af).

If TS, we can find new integers a1as and b1b,. After a finite number
of steps we get Sy, for the sum of all integers in the set is decreased at
each step. By (2.7) the theorem holds for p=2.

Now we assume that T is a closed set with p=p(7)=3. For a;
fixed we shall consider the set T(a;) = {azas C e Qp A ¢t ot a,ET}.
T(a,) is closed and p(T(a1)) =p—1. By assumption the theorem holds
for T(a1). Replace T'(a1) by a set Sy, n= l T(a1) | , restore the digit a;
and take union when ¢;=0, 1, .-, B—1. We get T7 with a(7})
=a(T). Note that |T(u——1)| = | T(v)| , since T is closed. It follows
that 7i is closed. Define Ti(as) = {awa <t Qp; Mg - - -a,,ETl}.
Ti(ay) is closed. Replace it by a set of type S,, restore the digit a; and

take union when a,=0, 1, - - -, B—1. T, is closed and a(7T2) 2 a(Ty).
Continue with the digits a3, - - -, @y, @1, a2, -+ - -+ . We get a sequence
of closed sets: T, Ty, Ty, - - -, for which

(2.8) a(Tw) Z a(Tw), | Tm| = | T|.

If Thy15~ T, then the sum of all integers in T'myy is smaller than
the sum of all integers in T,. Hence there is an index g such that

Tq=Tq+l="‘= 2+
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Then we find that 7, meets the requirements on .S in Lemma 2. If
Ty5#Sa, n=|T|, we can find a minimal a;a; - - - a,& T, and a maxi-
mal bybs - - - b,& T, such thata, - - - @¢,<by - - - bpand, by Lemma 2,

Gt a+ - +a>bh+ b+ -+ by

We delete byby - - - b, from T, and adjoin a4a; - - - @, to the set. Then
we get a closed set U for which a(U) >a(Ty). U fulfills the require-
ments on S in Lemma 2. If U#.S, we proceed to a new closed set
with larger a-value. After a finite number of steps we get S,. Hence
a(T) =a(S,) and the theorem follows by induction over p.

It is interesting to know that Lemma 1 is not valid for p(S) >2.
This is seen by the example:

S = {000, 001, 010, 100, 002, 011, 020, 110, 012, 021, 120},
Se = {000, 001, 010, 100, 002, 011, 020, 101, 012, 021, 111}.
S is closed, but S¢ is not closed since 110&€I'S® and 1106 Se.

COROLLARY.

k k
Bi(my+ « - - +m) 2 3 Bu(m) + 2, (v — )m,,

y=1 y=2

mZme= - Z=m =0,

By(mn) = mBi(n) + nBi(m), m,n = 1.

Proor. Determine p such that m; <k? and consider the set

k
S=U {0102 < - cap(v — 1); 010z - - - a,,ES,,.,}.

y==1

S is closed and |S|=my+ - - - +ms. The first inequality follows
if we determine a(.S) and apply Theorem 1.

The second inequality follows if we determine p and ¢ such that
m=k? and n=k? and consider the set

T = {al.. caghy - bg; a1 - Gy E Sy by - --quS..}-
T is closed, ITI =mn, a(T)=ma(S,)+na(S.) and a(T) Sa(Snma).

3. Application to determinants. We assume here that k=2. There
is a one-one mapping from nonnegative integers to sets of nonnega-
tive integers:

”=2n1+2ns+...+2M—-)N={nl’””...’n‘},
(3.1) ﬂ1>ﬂz>“°>ﬂ¢go,
0> .
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The set-theoretic counterpart to closed set of integers is closed
family of sets: & is a closed family of sets if N&F, M CN implies
McEs.

Puta(N) = l NI and a(%) = D_a(N), NESF. For functions f defined
on a closed family §, we put

3.2 jy = 2 (=)™,

) McN
where the sum is taken over all subsets to N. It is easy to verify
(f) " =f. The proof of the following lemma can also be omitted (cf.

[3, p. 481]).
LeMMA 3. If f is defined on a closed family §, and M, NEF, M{N,
2. (ZDIBfSNN) = 0.

SecM
We shall prove the theorem on determinants:

THEOREM 2. Let Ny, Ny, - - -, N, be an enumeration of all sets in a
closed family for which N;CN; only if 1<j. Then

FNA N [y = H (= )WF().

Proor. Multiply the last row in the determinant by (—1)!¥»l,
If N;:CN, we multiply the 7th row by (—1)!¥:il and add to the last
row. In the last row of the new determinant are all entries 0, except
the last one which is (f) " (V.) =f(V,). The value of the new determi-
nant is (— 1) J(N;ONY) |2 =f (V) | FVNON,) 574, If we note
that Ny= & and f(&) =f(&), the theorem follows by induction.

ExAMPLE. Let f(N)=2!¥, Then j(M)=(—1)!, It follows that
2@ equals a determinant with all entries +1 or —1. If & is the
family which corresponds to the integers 0, 1, - - -, n, we get Theo-
rem 1 in [2].
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