REPRESENTATION OF FUNCTIONS IN \(C(X) \)
BY MEANS OF EXTREME POINTS

N. T. PECK

Let \(X \) be a compact metric space. It is known that if \(U \) is the closed unit ball of \(C_r(X) \) (the space of continuous real-valued functions on \(X \) under the usual sup norm), a necessary and sufficient condition that \(U \) be the closed convex hull of the set of its extreme points is that \(X \) be totally disconnected (Bade \[1\]). It is also known (Phelps \[4\]) that if \(C(X) \) is the space of all continuous complex-valued functions on \(X \) under the sup norm, and if \(U \) is the closed unit ball of \(C(X) \), \(U \) is always equal to the closed convex hull of the set of its extreme points (see also Goodner \[2\]). It is our purpose in this note to obtain information about \(U \) in the case of \(C(X) \) similar to that obtained for \(C_r(X) \).

We make the following notational conventions: \(D \) will denote the closed unit disc in the complex plane and \(B \) will denote the set of points in \(D \) of modulus 1. By \(E \) we will mean the set of extreme points of \(U \) (the closed unit ball of \(C(X) \)); \(E \) is the set of all elements of \(U \) which map \(X \) into \(B \). The topological dimension of \(X \) as defined in Hurewicz and Wallman \[3\] will be denoted by \(\dim X \).

Our theorem now reads as follows:

Theorem. Let \(X \) be a compact metric space. Then the following are equivalent:

1. \(\dim X \leq 1 \);
2. \(U \) is a subset of the convex hull of \(E \).

Proof. We first observe that if \(f \) is a continuous map of a topological space \(Y \) into \(D \) which omits the origin, then there are two continuous maps \(f_1 \) and \(f_2 \) of \(Y \) into \(B \) such that \(f = (f_1 + f_2)/2 \). We now show that condition (1) implies condition (2). (I am indebted to the referee for strengthening and combining several arguments to give the following proof.)

Let \(f \) be in \(U \). By Theorem VI.1 of Hurewicz and Wallman, the origin is an unstable value of \(f \); by Proposition B of the same section, there is a continuous function \(h_1 \) which omits the origin such that

\[133 \]
If $|f(x)| \geq 1/3$, then $h_1(x) = f(x)$;

If $|f(x)| < 1/3$, then $|h_1(x)| < 1/3$.

Put $h_2 = 2f - h_1$. Then it is clear that h_1 and h_2 are in U.

Suppose $|h_1(x)| > 3\epsilon > 0$ for all $x \in X$. By the same results in [3], there is a continuous function g_2 such that g_2 omits the origin and such that

If $|h_2(x)| \geq \epsilon$, then $g_2(x) = h_2(x)$;

if $|h_2(x)| < \epsilon$, then $|g_2(x)| < \epsilon$.

Put $g_1 = 2f - g_2$. Now it is easy to check that g_1 and g_2 are in U; moreover g_1 omits the origin since $|g_1(x) - h_1(x)| = |g_2(x) - h_2(x)| \leq 2\epsilon$ for all $x \in X$. By the remark at the beginning of the proof, g_1 and g_2 are in the convex hull of E; hence $f = (g_1 + g_2)/2$ is in the convex hull of E.

We now prove that condition (2) implies condition (1). By [3, Theorem VI, §4] it suffices to prove the following: Let C be a closed subset of X. Then if f is a continuous map of C into B, there is an extension of f to a continuous map of X into B.

Hence, let C and f be as above. Using Tietze's theorem, we can extend f to a continuous \tilde{f} from X into D. If condition (2) holds, there is a probability measure μ on U (even one with finite support) such that $\mu(E) = 1$ and such that $L(\tilde{f}) = \int L(g)d\mu(g)$ for all L in the (complex) dual of $C(X)$. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence dense in C and define linear functionals L_n on $C(X)$ by $L_n(h) = h(x_n)$ for h in $C(X)$. Then for each n we have

$$\tilde{f}(x_n) = L_n(\tilde{f}) = \int L_n(g)d\mu(g) = \int g(x_n)d\mu(g);$$

we may divide to obtain

$$1 = \int_{E} \frac{g(x_n)}{\tilde{f}(x_n)} d\mu(g) \quad \text{for all } n.$$

Since $|\tilde{f}(x_n)| = |g(x_n)| = 1$ for all g in E and since μ is a probability measure, it must be the case that

$$\mu\{g \in E: g(x_n) \neq \tilde{f}(x_n)\} = 0 \quad \text{for each } n.$$

Hence,

$$\mu\left(\bigcup_{n=1}^{\infty} \{g \in E: g(x_n) \neq \tilde{f}(x_n)\}\right) = 0;$$
it follows that there is a g^* in E such that $g^*(x_n) = f(x_n) = f(x_n)$ for all n; since $\{x_n\}$ is dense in C, $g^*(x) = f(x)$ for all x in C. This g^* is the desired extension of f and the proof is thereby complete.

Bibliography

Yale University