On the asymptotic behavior of solutions near an irregular singularity
HTML articles powered by AMS MathViewer
- by Steven Bank
- Proc. Amer. Math. Soc. 18 (1967), 15-21
- DOI: https://doi.org/10.1090/S0002-9939-1967-0212243-1
- PDF | Request permission
References
- Steven Bank, On the instability theory of differential polynomials, Ann. Mat. Pura Appl. (4) 74 (1966), 83–111. MR 204785, DOI 10.1007/BF02416451
- Steven Bank, An asymptotic analog of the Fuchs regularity theorem, J. Math. Anal. Appl. 16 (1966), 138–151. MR 212242, DOI 10.1016/0022-247X(66)90192-2
- Erling William Chamberlain, Families of principal solutions of ordinary differential equations, Trans. Amer. Math. Soc. 107 (1963), 261–272. MR 148974, DOI 10.1090/S0002-9947-1963-0148974-2
- E. L. Ince, Ordinary Differential Equations, Dover Publications, New York, 1944. MR 0010757
- Walter Strodt, Contributions to the asymptotic theory of ordinary differential equations in the complex domain, Mem. Amer. Math. Soc. 13 (1954), 81. MR 67290
- Walter Strodt, Principal solutions of ordinary differential equations in the complex domain, Mem. Amer. Math. Soc. 26 (1957), 107. MR 92901 —, Report on investigation in differential equations, Contract NSFG 12984 between the National Science Foundation and Columbia University, November, 1961.
Bibliographic Information
- © Copyright 1967 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 18 (1967), 15-21
- MSC: Primary 34.50
- DOI: https://doi.org/10.1090/S0002-9939-1967-0212243-1
- MathSciNet review: 0212243