A GENERALIZED APPROXIMATION THEOREM FOR DEDEKIND DOMAINS

LUTHER CLABORN

It is well known that a Dedekind domain A with a finite number of prime ideals is a principal ideal domain. A reasonable generalization of this result would be: If A is a Dedekind domain and S is the set of prime ideals of A, then $\text{card } S < \text{card } A$ implies that A is a principal ideal domain.

In fact, this latter statement is false; see [1]. But it is true that if $(\text{card } S)^{\aleph_0} < \text{card } A$, then A is a principal ideal domain. A proof is given in the present article of a slight generalization (analogous to the weak approximation theorem) of this result.

Before proceeding to this result, we give a proposition that displays a large class of examples for which the stronger assertion of the first paragraph is valid. We will use the phrase “Let A, S be a Dedekind domain” rather than “Let A be a Dedekind domain, and let S be the set of prime ideals of A” for the balance of the article. Also, if P is a prime ideal of A, then v_P will denote the normed valuation going with the prime ideal P.

Proposition. Let A, S be a Dedekind domain and suppose that A contains a field F such that $\text{card } F = \text{card } A$. Suppose that $\text{card } S < \text{card } A$. Then A is a principal ideal domain.

Proof. Let P be in S; choose π and σ in A such that $v_P(\pi) = 1$, $v_P(\sigma) = 2$ and $P = (\pi, \sigma)$. Consider the set of elements $\pi + f\sigma$ for f in F. For all f, we have $v_P(\pi + f\sigma) = 1$. If P is not principal, then for each f, there must be a $Q \neq P$ in S such that $\pi + f\sigma$ is in Q. Since card $F > \text{card } S$, there will be an f and f' in F such that $\pi + f\sigma$ and $\pi + f'\sigma$ are in the same prime ideal $Q \neq P$ of S. But then $(f - f')\sigma$ is in Q, so σ is Q, forcing also π in Q. This implies that $P' = (\pi, \sigma)$ is contained in Q, which is a contradiction.

Remark. If T is a subset of S, P is a prime ideal in T, and there is an element a_P of A such that $v_Q(a_P) = \delta_{P,Q}$ for all Q in T, then we will say that P is principal with respect to T.

Theorem. Let A, S be a Dedekind domain and let T be a subset of S such that not every prime ideal of T is principal with respect to T. Then $\text{card } A \leq (\text{card } T)^{\aleph_0}$.

Received by the editors May 16, 1966.
Proof. If \(T \) is a finite set, the weak approximation theorem handles the situation. If any prime ideal \(P \) of \(S \) is such that \(A/P \) is finite, then imbedding \(A \) in its \(P \)-adic completion shows that \(\text{card } A \leq (\text{card } A/P)^{\aleph_0} \leq (\text{card } T)^{\aleph_0} \); so we may assume that \(A/P \) is infinite for any \(P \) in \(S \).

We first show that there is a subset \(S' \) of \(S \) such that \(T \) is contained in \(S' \), \(\text{card } T = \text{card } S' \), and \(S' \) contains an infinite number of prime ideals which are not principal with respect to \(S' \). If \(T \) will not work, let \(P_1, \ldots, P_k \) be the prime ideals of \(T \) which are not principal with respect to \(T \). For each \(Q \) in \(T - \{ P_1, \ldots, P_k \} \) let \(a_Q \) be a generator of \(Q \) with respect to \(T \). Let \(W \) be the set of prime ideals of \(S - T \) which contain an \(a_Q \) for some \(Q \) in \(T - \{ P_1, \ldots, P_k \} \). Set \(T' = T \cup W \). \(P_1, \ldots, P_k \) are certainly not principal with respect to \(T' \); further, not all prime ideals \(R \) in \(W \) can be principal with respect to \(T' \). For suppose they are, and let \(a_R \) \((R \text{ in } W) \) be a generator for \(R \) with respect to \(T' \). Choose \(x \) in \(A \) such that \(v_{P_1}(x) = 1, v_{P_i}(x) = 0 \) for \(i = 2, \ldots, k \). Multiplying \(x \) by appropriate negative powers of the \(a_Q \) \((Q \text{ in } T - \{ P_1, \ldots, P_k \}) \) yields an element \(y \) in the quotient field of \(A \) such that \(v_{P_1}(y) = 1, v_{P_i}(y) = 0 \) for \(i = 2, \ldots, k \), and \(v_Q(y) = 0 \) for \(Q \) in \(T - \{ P_1, \ldots, P_k \} \). But \(y \) will have negative values only for certain of the \(v_R \) \((R \text{ in } W) \). Multiplying by appropriate positive powers of the \(a_R \) \((R \text{ in } W) \) produces an element which generates \(P_1 \) with respect to \(T' \) (hence with respect to \(T \)) and gives a contradiction.

Inductively, set \(T_1 = T' \) and \(T_n = (T_{n-1})' \). Then \(U_1 T_n \) works.

We will now assume that \(T \) contains an infinite sequence of primes \(P_1, P_2, \ldots \), which are not principal with respect to \(T \). We will let \(v_i \) denote the valuation going with \(P_i \). Choose \(\pi_1 \) and \(\sigma_1 \) such that \(v_1(\pi_1) = 1, v_1(\sigma_1) = 2 \) and \(P_1 = (\pi_1, \sigma_1) \). Delete from the list the \(P_i \) \((i > 1) \) which contain \(\sigma_1 \) and renumber the remaining primes in their original order. Choose \(\pi_2 \) and \(\sigma_2 \) such that \(v_2(\pi_2) = 1, v_2(\sigma_2) = 2 \), \(P_2 = (\pi_2, \sigma_2) \) and \(\pi_2/\sigma_2 \not\equiv \pi_1/\sigma_1 \). Delete from the list the \(P_i \) \((i > 2) \) which contain \(\sigma_1 \) or \(\sigma_2 \) or for which \(v_i(\pi_2/\sigma_2 - \pi_1/\sigma_1) > 0 \). Inductively, choose \(\pi_j \) and \(\sigma_j \) such that \(v_j(\pi_j) = 1, v_j(\sigma_j) = 2 \), \(P_j = (\pi_j, \sigma_j) \) and also subject to the condition: if \(k < j \), then \(\pi_j/\sigma_j \not\equiv \pi_k/\sigma_k \) modulo any of the prime ideals \(Q \) of \(S \) for which \(v_Q(\pi_m/\sigma_m - \pi_n/\sigma_n) \) is positive with \(m, n < j \) (this of course provided \(v_Q(\pi_k/\sigma_k) \geq 0 \)). This is possible since \(A/P \) is infinite for all \(P \) in \(S \) and since \(v_i \) is not positive at \(\pi_m/\sigma_m - \pi_n/\sigma_n \) with \(m, n < j \). Then delete the \(P_i \) \((i > j) \) which contain any of \(\sigma_1, \ldots, \sigma_j \) or for which \(v_i(\pi_m/\sigma_m - \pi_n/\sigma_n) > 0 \) with \(m, n \leq j \) and renumber.

Let \(a \) be an element of \(A \), and consider the set \(\{ \pi_i + a\sigma_i \} \). For each \(i \), \(v_i(\pi_i + a\sigma_i) = 1 \), and \(P_i \) is not principal with respect to \(T \), so there is a prime ideal \(Q_i \) \((\not\equiv P_i) \) in \(T \) such that \(\pi_i + a\sigma_i \) is in \(Q_i \). Making
some choice for each i, let $f_a: i \rightarrow Q_i$ be the map induced by a. The image of f_a is infinite. If not, then there is a finite subset R_1, \ldots, R_m of T such that $\pi_i + a\sigma_i$ is contained in one of these for each i. Suppose that for an infinite number of i, $\pi_i + a\sigma_i$ is in R_1. If R_1 is a P_n for some n, choose p, q, r such that $p > q > r > n$ with $\pi_p + a\sigma_p, \pi_q + a\sigma_q, \pi_r + a\sigma_r$ all in R_1 (if R_1 is not in the set $\{P_i\}$, simply choose $p > q > r$). If σ_j is in R_1 for $j = p, q, r$, then π_j is also in R_1 forcing P_j to be R_1 and giving a contradiction. We then have $\pi_j/\sigma_j = -a(R_1)$ for $j = p, q, r$ and so we get $\pi_p/\sigma_p \equiv \pi_q/\sigma_q$ modulo R_1, but v_{R_1} has positive value at $\pi_q/\sigma_q - \pi_r/\sigma_r$ which contradicts the construction for the π_i and σ_i.

If now $f_a = f_b$, we get that $\pi_i + a\sigma_i$ and $\pi_i + b\sigma_i$ are in the same ideal Q_i for all i. This yields $(a - b)\sigma_i$ in Q_i for all i. We cannot have σ_i in Q_i (else $P_i = Q_i$) so $a - b$ is in Q_i for all i. Since the set $\{Q_i\}$ is infinite, $a = b$.

Letting N denote the natural numbers, we get that each a in A induces a map $f_a: N \rightarrow T$. Since $a \rightarrow f_a$ is one-to-one, we have $\text{card } A \leq (\text{card } T)^{\aleph_0}$.

Corollary 1 (Generalized Approximation Theorem). Let A, S be a Dedekind domain, and let T be a subset of S such that $(\text{card } T)^{\aleph_0} < \text{card } A$. Given a set of nonnegative integers $\{n_p\}$ for P in T which are almost all zero, there is an element x in A such that $v_p(x) = n_p$ for all P in T.

Corollary 2. If A, S is a Dedekind domain and $(\text{card } S)^{\aleph_0} < \text{card } A$, then A is a principal ideal domain.

References

Cornell College and University of Illinois, Urbana