Let A be a commutative semisimple regular Banach algebra with identity 1 and maximal ideal space \mathfrak{M}. For simplicity, we identify A and A^\wedge, the Gelfand representatives of A in $C(\mathfrak{M})$. Thus, A is an algebra of continuous functions containing the constants on the compact Hausdorff space \mathfrak{M}. A well known consequence of the regularity of A is the fact that any element of $C(\mathfrak{M})$ which is locally in A is actually in A. (A function f on \mathfrak{M} is said to be locally in A if for each x in \mathfrak{M} there exists a neighborhood U of x and element a in A such that $f=a$ on U.) The purpose of this note is to prove a related result for certain subalgebras B of A. We say that a subalgebra B of $C(\mathfrak{M})$ separates the points of \mathfrak{M} if to each x, y in \mathfrak{M}, $x \neq y$, there exists b in B such that $b(x)=0$ and $b(y)=1$. (If $1\in B$, this is the same as the usual definition of “separating”.)

Theorem. Let B be a subalgebra (not necessarily closed) of the regular algebra A, which separates the points of \mathfrak{M}, and suppose that every element of A is locally in B. Then $B=A$.

[Applied, in particular, to $A=C(X)$, X compact Hausdorff, this says that any separating subalgebra B of $C(X)$ which yields the same “germs” as $C(X)$ at each x in X is necessarily all of $C(X)$.

Proof. For any a in A and x in \mathfrak{M} there is an element b of B with $b=a$ on some neighborhood U of x. Thus, by compactness, there exist elements b_1, \ldots, b_n of B and an open covering U_1, \ldots, U_n of \mathfrak{M} for which $a=b_i$ on U_i. It will suffice to prove that subordinate to such a covering there exists a “partition of unity” $\{e_1, \ldots, e_n\}$ in B (i.e., each e_i vanishes off U_i, and $\sum e_i=1$). Indeed, we then observe that $a=\sum e_i b_i$ is in B.

Suppose that x and y are distinct points of \mathfrak{M}. By hypothesis, there exists b in B with $b(x)=0$ and $b(y)=1$, so $0 \in b(W)$ for some compact neighborhood W of y. Let kW denote the ideal $\{a: a\in A, a(W)=0\}$. Since A is regular, W is the maximal ideal space of the quotient algebra A/kW and the corresponding Gelfand representation is defined by $a+kW \rightarrow a|_W$. Thus, b gives rise to an invertible element of A/kW, so $ab=1$ on W for some a in A. But the element a coincides with some b' in B on a neighborhood of y, so $bb'=1$ near y while $bb'(x)=0$. Now the element $1-bb'$ is in A, vanishes in a neighborhood of y and is 1

Received by the editors December 2, 1964.
at \(x \), so the same argument, applied to \(1 - bb' \) and \(x, y \) interchanged, shows that there exists \(b'' \) in \(B \) such that \(b''(1 - bb') = 1 \) in a neighborhood of \(x \). Thus, \(e = b'' - b''bb' \) is in \(B \), vanishes near \(y \) (since \(1 - bb' \) does) and is 1 near \(x \). By a well-known argument [2] the existence of such elements \(e \) of \(B \) shows that \(B \) is a normal algebra of functions on \(\mathfrak{M} \) (in the obvious sense) so that the desired partitions of unity can be obtained as in [2].

Note that we need to assume that the points of \(\mathfrak{M} \) at which the elements of \(A \) belong locally to \(B \) comprise all of \(\mathfrak{M} \): Consider the sub-algebra \(B \) of \(C([0, 1]) \) consisting of those functions which coincide with a polynomial near 0. Also, \(B \) must be an algebra and not just a subspace, as is shown by the subspace \(B \) of \(C([-1, -\frac{1}{2}] \cup [\frac{1}{2}, 1]) \) consisting of all functions of the form \(f + c \) where \(c \) is a constant and \(f \) as an odd function.

As is well known [1], if \(A \) is a sup norm algebra, elements of \(C(\mathfrak{M}) \) belonging locally to \(A \) need not belong to \(A \); whether the analogue of our result is valid for sup norm algebras \(A \) remains an open question.

Bibliography

University of Washington