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1. Introduction. The main conclusions of this paper are given in

Theorems 7, 10, 11 and 12. These theorems describe some of the

structure of a connected linear algebraic group G having a birational

automorphism a such that the subgroup Fo(a) of fixed points of a

in G is finite. (Some of this structure is described in [3] in the case

where Fa(o-)= {1}.)

Algebraic group automorphisms having only finitely many fixed

points occur significantly more frequently than do those which keep

fixed only the identity, and they occur under less restrictive condi-

tions. (One simple indication of this is that over the field of complex

numbers, there are tori of positive dimension which admit birational

automorphisms of prime period having only finitely fixed points,

but every such automorphism has nonidentity fixed points.)

The proof of Theorem 7 is heavily dependent upon Lemmas 2

and 6. Lemma 6 is also important for the proofs of Theorems 10,

11,  12.

2. Preliminaries. In this paper, G is a connected linear algebraic

group over an algebraically closed field of characteristic 0 or p>0

and <r is a birational automorphism of G. If G is a normal subgroup

of a group K, then for x in K, Int<? x is the automorphism of G defined

by: Into x(g) =x_1gx for g in G.

Lemma 1. Let G be semisimple and let a be a birational automorphism

of G. Then there is a linear algebraic group K containing G as a closed

normal subgroup of finite index and an element s in K such that a = IntG s.

Proof. Aut G/IntG G is finite [2, §17-07]. It follows that for some

integer n, an lies in IntG A where A is a closed connected divisible

abelian subgroup of G having the property that a commutes with the

elements of Intc A. (For if cr* = IntG s and if B denotes the closed

subgroup of G generated by s, then B is abelian and, as is easily seen,

cr commutes with each element of Into B; moreover for some j, ak3
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lies in IntG Po, where P0 is the connected component of the identity

in B and has the form BQ=TU (direct), T being a torus and U a

closed connected unipotent subgroup of G; therefore we can let

A =P0 if the characteristic is 0, A = T if the characteristic is p>0.)

Consequently, there exists r in Aut G such that rn = l, ar=Ta, and

(tEt Int<? G. (For if o-" = Int xn with x in A, we can let t — g IntG x~K)

Let K=(t)G (semidirect). Then K can be given the structure of a

linear algebraic group containing G as a closed subgroup, since

(K: G) is finite (e.g. by way of the representation of K induced by

G). Choosing y in G such that <r = r Into y, we have o- = Intc s where

s = ry in K.

We need the following lemma (see also Theorem 2 of [6]):

Lemma 2. Let G be semisimple. Let r be a birational automorphism of

G which keeps stable a maximal torus T of G and a Borel subgroup B

of G containing T. Then dim Fg(t) ^ 1 if dim G^ 1.

Proof. Suppose that dim G^l. The cyclic group (r) generated

by t acts in the group T* of rational characters of P and keeps stable

the subset 5 of fundamental roots of P with respect to P. Let m be the

index in T* of the subgroup generated by 5. Let t be an element of

finite order such that a(t)=0(t) whenever a and |8 are in the same

orbit of (t) in 5. Then a(r(t)) =a(t) for a in 5. Thus xm(r(t)) =Xm(0

for x in P*. Thus x(T(tm)) = x(tm) for % in P* and r(tm) =tm since 7"*

separates points. The order of t (and hence of tm) can be taken to be

arbitrarily large (since 5 is a linearly independent subset of T*).

Thus dim Ft(t) j^l.

Lemma 3. Let © be a p-group having a normal subgroup § which is

infinite and has a faithful finite dimensional representation p over afield

of characteristic p. Then the centralizer in § of each element g of ©

is infinite.

Proof. Let g be an element of ®. Let 9TC = (g)§. Then (9TC: & is

finite and p induces a faithful finite dimensional representation of 3TC.

Thus we may assume without loss of generality that 3R is a linear

group. This group consists of unipotent transformations since 3R is

a p-group. Thus 3TC is nilpotent by Kolchin's theorem [5, pp. 775

and 776]. Let §0 be the (Zariski-) connected component of the

identity in §. Then §0 is a normal subgroup of 3TC of finite index,

whence §0 is infinite. For SC3TC, let g0(S)=S, gi(S) = (g, S), ■ ■ ■ ,

gi+i(S) = (g, gi(S)) ((g, h)=g~1hr1gh). Since 3R is nilpotent we can

find i such that g,-+i(£>o) = |l} and gi(^>o)^ {f}- Since ^o is con-



1967] ALGEBRAIC GROUP AUTOMORPHISMS 373

nected, g»(£>o) is connected. Thus g,(§o) is an infinite subset of §

centralizing g. Thus the centralizer in § of an arbitrary element g

of © is infinite.

3. Solvability of G when Fa(a) is finite. For x, g in G, let x„g

= a'(g~1)xg. G acts on itself on the right as a group of birational trans-

formations, an element g in G sending x into x„g. Since Fg(a)

= {gI l<rg= 1}, an application of a dimension theorem [l, Theorem 2,

p. 106] yields:

Lemma 4. FG(a) is finite if and only if 1„G= {l„g\gEG} is dense
in G.

An immediate consequence of this is:

Lemma 5. Let R be a closed connected characteristic subgroup of G.

Define G = G/R and let a denote the automorphism of G = G/R induced

by a. Then if Fa(a) is finite, Fq(<t) is finite.

If a has finite order, the semidirect product {<j)G of the cyclic

group (a) generated by a with G may be regarded as a linear alge-

braic group containing G as a closed normal subgroup of finite index

(by way of the representation of (a)G induced by G). Elements r of

(a)G are regarded as automorphisms of G as follows: r(g) =T~lgr for

t in (a)G and g in G.

Lemma 6. Let a have finite order n. Suppose that Fo(a) is finite.

Define K = (a)G (semidirect). Then for t in the subset aG of K, the ex-

ponent of Fg(t) divides n.

Proof. 1„G= {a~lg~lag\gEG} is dense in G by Lemma 4. Thus

o-(l,G)= {g-'<rg|gGG} is dense in aG. If A= {tG<tG|t"= 1}, then

N is closed and {g_Io"g|gGG} CZA. Thus N = aG and t"=1 for r in

aG. Thus for t in aG and g in Fq(t), 1 = (Tg)" = r"gn = gn. Thus the

exponent of Fg(t) divides n.

Theorem 7. Let Fg(a) be finite. Then G is solvable.

Proof. Suppose first that G is semisimple. Then by Lemma 1,

there is a linear algebraic group K containing G as a closed normal

subgroup of finite index and an element 5 in K such that er = Intc 5.

If (K: G) =m, then Fe(a) contains sm and sm has finite order. Thus a

has finite order. Thus we may take K to be the semidirect product

(a)G described in Lemma 6. Let P be a maximal torus of G, B a Borel

subgroup of G containing P. Since IntG G acts transitively on the set

of Borel subgroups of G, and since lntB B acts transitively on the set

of maximal tori of B, there exists r in aG such that B and T are



374 D. J. WINTER [April

r-stable. If dim G^l, then dim Ft(t) ^ 1 by Lemma 2. But the

exponent of Fg(t) is finite by Lemma 6. Thus dimG = 0 and G= |l}.

We now consider the general case and let R be the radical of G.

Define G, a as in Lemma 5. Then Fq(o) is finite since FG(a) is finite

(Lemma 5). Thus G=|lj by the preceding discussion. Thus G is

solvable.

4. General structure of (G, a) when FG(<r) is finite.

Proposition 8. Let Fg(o~) be finite. Then 1„G = G and a keeps stable

a maximal torus of G.

Proof. G is solvable by Theorem 7. If G is abelian, then the map-

ping sending g into l„g is a rational homomorphism from G into G;

and therefore l<rG is closed. But 1„G is dense in G by Lemma 4. Thus

1„G = G if G is abelian.

The proof continues by induction on dim G. Let P be a closed con-

nected characteristic abelian subgroup of G of positive dimension

(e.g. the next to last term of the derived series of G). Define G, a as

in Lemma 5. Then Fq(<t) is finite by Lemma 5 and G = T7G by induc-

tion. Thus for g in G, there exists x in G such that g = I?^. Then

1 =gdxrx= \g,x~xY~ and g,x~x is in P. Since P is abelian, P = 1„P.

Thus g„xrl = Ly for some y in P. Then g= (g,x~1)„x= (l„y)„x= l„(yx)

and g is in 1„G. Thus G = 1„G.
Now a standard argument shows that er keeps stable a maximal

torus of G. Let P be a maximal torus of G. Then a(T)=x~1Tx for

some x in G. Since G= 1„G, x = g<r(g~1) for some g in G. Now <r(g~1Tg)

= cr(g)-1cr(T)(T(g)=(T(g)~1(x~lTx)<T(g)=g-1Tg (since x<r(g)=g), and

g~lTg is cr-stable.

Lemma 9. Lei Fq(o) be finite and let a have finite order. Let <rs be the

p-regular part of a. Then Fg(o~,) consists of semisimple elements.

Proof. G is solvable by Theorem 7. Thus G=TU where P is a

maximal torus of G and U is a closed connected characteristic uni-

potent subgroup of G. Let <r = Tp. where t, p. are the p-regular and

p-singular components of a respectively. Then V= Fv(t) is connected

(by [2, §6-02, Corollary 2], since <r is of finite order and (cr)G can

be given the structure of an algebraic linear group containing G as a

closed subgroup) and //-stable. If dim F^l, Fv(p) is infinite (apply

Lemma 3 to ® = (p)Fif the characteristic is p>0; if the characteristic

is 0, ju = l). But Fg(o-) is finite and FG(o-) contains Fv(p). Thus

dim F=0 and Fv(r) = |l}. Since U is the set of unipotent elements

of G [2, §6-06] and since Fg(t) is algebraic, Fg(t) consists of semi-

simple elements.



1967] ALGEBRAIC GROUP AUTOMORPHISMS 375

Theorem 10. Let Fo(a) be finite and let a have finite order. Then a

keeps stable a unique maximal torus Tc; and T„ contains Fa(a). More-

over T„ is the only maximal torus of G stable under the p-regular part

at of a; and P„ contains FG(as).

Proof. By Proposition 8, a keeps stable some maximal torus P of

G. Let g be in Fq(t) where T = aB. Then since G=TU where U is a

closed connected characteristic unipotent subgroup, g = tu with t in

P and u in U. But g = gT = tTuT and tT is in T, W in U. By the unique-

ness of the decomposition g = tu, t = tT and u = uT. Thus u is in Fg(t).

By Lemma 9, w = l. Thus g = tET and Fg(t)QT. Since rE(a),

FG(a)QFG(r)QT.

If 5 is a second maximal torus stable under r, then S=TX for some

x in U. We have T* = t(T*) = 7><*> and t(x)x~x is in N = {u E U\ T" = P {

(here we use the notation Ta = a~1Ta). Since G is solvable, A is a

closed connected group centralizing P see [2, §6-04]. Since P and U

are r-stable and A is the centralizer in U of P, A is r-stable. Thus

A=1TA since Pr/(r) is finite by Lemma 9. Thus r(x)x~1=r(y)y~1

for some y in A. Now y_,x is in Fg(t). Since Fg(t)C.T, we have

TX=T" X=T. Thus P is the only r-stable maximal torus of G.

It follows that P is the only cr-stable maximal torus of G (this last

fact is proved more directly by replacing r by a and A by the nor-

malizer of P in G in the above argument).

Theorem 11. Suppose that G is not nilpotent and let a be of finite

squarefree order. Then there exist ai in (a) (*=1, 2) such that a = aia2,

Fo(ai) contains a torus of positive dimension, and FG(a2) contains a

closed connected unipotent subgroup of positive dimension.

Proof. This is trivial if FG(a) is infinite (since an infinite linear

algebraic group contains either a torus of positive dimension or a

closed connected unipotent subgroup of positive dimension, and a

connected nonnilpotent algebraic group contains both) [2, Expose 6].

Now let FG(a) be finite. Then G is solvable and G=TU where P

is a <r-stable torus and U is a closed connected characteristic uni-

potent subgroup of G (Theorems 7 and 10). Define Ui= {uEU\u

is central in U and wp = l}, - • • , Ui+i= {uEU\uUi is central in

U/Ui and «'££/,•} (at characteristic 0 this is just the ascending

central series). For some n, U= Un (since U is nilpotent by [5], and

of finite exponent pe for some e if the characteristic is p>0). (a)T

(semidirect) acts in Wi=Ui+i/Ui for all i^l. Since G is not nil-

potent, we can choose i such that P acts nontrivially in Wt (for

otherwise 1 ̂  Pi^ • • • ^Un^UnT = G would be a central series for

G). Choose such an i and let W=Wt. Let Tk= {tET\tk = l}  (k a
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positive integer). Since U(t,|,|P)_i Tk is dense in P, we can choose k

such that (k, \ff\p) = f and Tk acts nontrivially in W. Let ® = (a)Tk.

IF is a vector space (over the field of p elements if the characteristic

is p>0; otherwise over the underlying field of G) and ® acts in W

as a group of linear transformations. Since @ is finite, IF has a finite

dimensional subspace V, stable under ®, on which Tk acts non-

trivially.

We now use a refinement of a technique used by Higman in [4].

Let F be the vector space obtained from V by extending the ground

field of V to its algebraic closure. If a is a function from Tk into the

underlying field of F, let Va— {vE V\vt = a(t)v for all t in Tk}. Then

F=SeFQ. Let P= {a\ F«^ |0J }. Then ® acts in P in a natural

way and P contains an element a such that a(t) 7^ 1 for some / in Tk.

Choose such an a. Let (<ri) be the isotropy subgroup of (<r) acting in

R at the point a. Since |<r| is squarefree, (o-) = (o-i)X(o-2) (direct)

for some o-2 in (a). o"i keeps Va stable whereas (a2) acts simply transi-

tively on the orbit of a under (<r); and (o-2)i maps F« onto Va< where

<Xi is the image of a under (cr2)i. Let a = |<T\\, b=\a2\. Choose t in Tk

such that a(t)5^1 and let i=ai(t)(ai)2(t) ■ ■ ■ (<ri)"(t). Choose a non-

zero element x in F„ and let x = o-2(x) + (o-2)2(x) + • • • +(o-2)6(x).

Then o-i(t)=t and a2(x)=x. Now i^l since ;| F„ and o"i| F« are com-

muting transformations of Va, so that

t\ Va - (W^iKC'd"^^ • ■ ■ ((<ri)-"/(<r,)°) | Fa

= <»| 7« = (a(0)° idi?a ^ id Fa

(since (a, | P*|) = l implies that (a(t))"^l). And x^O since the ele-

ments o-2(x), • • • , (<r2)*(x) are linearly independent (2Faj is direct

and (o-2)'(x) lies in F„, for all i).

Thus Prt(o-i)^ {1} and FUi+i/Ui(cr2)^ {l}. It follows that P0(o-i)

contains a torus of positive dimension (for otherwise FT(o~i) would

be finite, and by Lemma 6, x" = 1 for x in Pr(o~i); but this is impossible

since (a, |P*|) = 1 and FT((Ti)^ FTk(ffi)> {l}). We next show that

Fg(o~2) contains a closed connected unipotent subgroup of positive

dimension. For this, let <r2=Tp, where t, p, are the p-regular and p-

singular components of a2 respectively. Then Pr/j+1/r/,(r) =^ 11}. Since

H'-dr), Ui) = |0} (the exponents of (r) and U{ are relatively prime),

it follows that Fv(t) ^ 11}. Thus Fu(t) is infinite by Lemma 6. Since

Fu(t) is /x-stable, an application of Lemma 3 with ® = (p)Fu(t) and

1q = Fu(t) shows that Pt/(cr2) = Fa(rp) = F@(ji) is infinite. Thus

Fg(c2) contains a closed connected unipotent subgroup of positive

dimension.
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Theorem 12. If a has prime period and FG(a) is finite, then G is

nilpotent.

Proof. This is immediate from Theorem 11.

We conclude with an example of some of the structure described

above (which shows in particular that in Theorem 12 "prime period"

cannot be replaced by "prime power period"). Let V be a vector

space over P with basis ei, ■ ■ ■ , em, f. Let g(a, b) be the linear

transformation of V defined by g(a, &)e, = a;ei+&,/, g(a, b)f=f for

a=(ai, ■ ■ ■ , am), b = (bu • • • , bm) in Fm. Let G= {g(a, b)\irai = \}.

G is a group since g(l, 0)=I and g(a, b)g(c, d)=g(ac, bc+d) (where

0= (0, • • • , 0), 1 = (1, • • • , 1) and xy, x+y are defined component-

wise for x, y in Fm). Let P= {g(a, 0)|ira,-=l}, U= {g(l, b)\bEFm}.

G= TU (semidirect); and G is an algebraic group with maximal torus

T and nilradical U. If m^2, G is not nilpotent (since P is not central,

see [2, §6-04]). The basis change (eu ■ ■ • ,em,f)-^(eem,ei, ■ ■ ■ ,em_i,/)

(e in F) induces a birational automorphism af of G sending g(a, b)

into g(a', b<) where (ah ■ • ■ , am)'=(am, au ■ ■ ■ , am_x) and

(bi, • • •, bm)'=(ebm, bu ■ ■ • , 6m_x). If e^l, FG(af)={g(a, 0)\a

— (8, • • ■ , 5) and 5m=l} is a finite subset of P. If € is a primitive

gth root of 1, a, has finite order mq. By varying m and q, one finds

various directions in which Theorems 11 and 12 cannot be gen-

eralized.

Bibliography

1. C. Chevalley, Fondements de la giomitrie algebrique, Faculte des Sciences de

Paris, 1958.

2. - (Seminaire C. Chevalley), Classification des groupes des Lie algebrique,

Vols. I, II, ficole Norm. Sup. Paris, 1958.

3. D. Hertzig, The structure of Frobenius algebraic groups, Amer. J. Math. 3 (1961),

421-431.

4. G. Higman, On groups and rings which possess automorphisms without non-

trivial fixed elements, J. London Math. Soc. 32 (1957), 321-324.

5. E. Kolchin, On certain concepts in the theory of algebraic matric groups, Ann. of

Math. 49 (1948), 775-776.

6. D. J. Winter, On automorphisms of algebraic groups Bull. Amer Math Soc.

72 (1966), 706-708.

Yale University


