CONFORMAL EQUIVALENCE OF COUNTABLE DENSE SETS

W. D. MAURER

In [1, p. 297, problem 24], Erdös asks:

"Does there exist an entire function f, not of the form $f(z) = a_0 + a_1 z$, such that the number $f(x)$ is rational or irrational according as x is rational or irrational? More generally, if A and B are two denumerable, dense sets, does there exist an entire function which maps A onto $B"?"

The following theorem settles the second part of this question as it is stated.

Theorem. Let A and B be two countable dense sets in the complex plane. Then there exists an entire function taking A onto B.

Proof. Let a and b be enumerations of A and B, i.e., $A = \{a_1, a_2, \ldots\}$, $B = \{b_1, b_2, \ldots\}$. We construct two new enumerations c and d of A and B respectively, together with a sequence f_i of polynomials such that $f(c_i) = d_i$ for each i, where $f = \sum_{j=1}^{\infty} f_j$.

The construction is as follows. Let $c_1 = a_1$, $d_1 = b_1$, $f_1 = d_1$ (the constant function). At the $(2n-1)$st stage, suppose that c_1, \ldots, c_{2n-1}; d_1, \ldots, d_{2n-1}; and f_1, \ldots, f_{2n-1} have been chosen, such that $g_{2n-1}(c_i) = d_i$, $1 \leq i \leq 2n-1$, where $g_{2n-1} = \sum_{j=1}^{2n-1} f_j$. Let $c_{2n} = a_j$, where j is the smallest index such that $a_j \neq c_i$, $1 \leq i \leq 2n-1$, and set $y_{2n} = g_{2n-1}(c_{2n})$. Let the function $h_{2n-1} = (z - c_1)(z - c_2)\cdots(z - c_{2n-1})$, and consider the functions $g_{2n-1} + h_{2n-1}$, for

$$|k_{2n-1}| < \frac{1}{(2n-1)!u_1u_2\cdots u_{2n-1}} = m_{2n-1}$$

where $u_i = \max(1, |c_i|)$, $1 \leq i \leq 2n-1$. These functions map c_{2n} into $\{y_{2n} + k_{2n-1}h_{2n-1}(c_{2n}) : |k_{2n-1}| < m_{2n-1}\}$, which is a neighborhood of y_{2n} because $h_{2n-1}(c_{2n}) \neq 0$, and consequently contains an element of the dense set $B - \{d_1, \ldots, d_{2n-1}\}$, which we denote by d_{2n}. For the corresponding value of k_{2n-1}, we set $f_{2n} = k_{2n-1}h_{2n-1}$, $g_{2n} = g_{2n-1} + f_{2n}$, which clearly implies $g_{2n}(c_i) = d_i$, $1 \leq i \leq 2n$, and $g_{2n} = \sum_{j=1}^{2n} f_j$. This brings us to the 2nth stage. Let $d_{2n+1} = b_j$, where j is the smallest index such that $b_j \neq d_i$, $1 \leq i \leq 2n$, and set x_{2n+1} such that $g_{2n}(x_{2n+1}) = d_{2n+1}$; this is always possible since g_{2n} is a polynomial. Let the function $h_{2n} = (z - c_1)(z - c_2)\cdots(z - c_n)$, and consider the functions $g_{2n} + k_{2n}h_{2n}$, for

Received by the editors January 25, 1966.
where \(u_i = \max(1, |c_i|), 1 \leq i \leq 2n \). These functions map all elements of some neighborhood of \(x_{2n+1} \) into \(d_{2n+1} \), and hence there exists a particular value of \(k_{2n} \) for which \(g_{2n+1}(c_{2n+1}) = d_{2n+1} \), where \(f_{2n+1} = k_{2n}h_{2n}, g_{2n+1} = g_{2n} + f_{2n+1} \), and \(c_{2n+1} \) is a member of the dense set \(A = \{ c_1, \ldots, c_{2n} \} \).

The functions \(|f_j|\) are majorized by

\[
\left| \frac{(z - c_1)(z - c_2) \cdots (z - c_j)}{j!u_1u_2 \cdots u_j} \right| = \frac{1}{j!} \left(\frac{z - c_1}{u_1} \right) \left(\frac{z - c_2}{u_2} \right) \cdots \left(\frac{z - c_j}{u_j} \right).
\]

For each \(i, 1 \leq i \leq j \), if \(|c_i| \leq 1 \), then \(u_i = 1 \) and \(\left| (z - c_i)/u_i \right| = |z - c_i| \leq |z| + 1 \), while if \(|c_i| > 1 \), then \(u_i = |c_i| \) and \(\left| (z - c_i)/u_i \right| \leq |z|/|c_i| + |c_i|/|c_i| = |z|/|c_i| + 1 \). Thus the functions \(|f_j|\) are also majorized by \((|z| + 1)^j/j! \), and therefore \(f = \sum_{j=1}^{\infty} f_j \) is an entire function with \(f(c_i) = d_i \) for all \(i \). By virtue of the “back-and-forth” induction, the maps \(c \) and \(d \) are enumerations, i.e., \(A = \{ c_1, c_2, \ldots \} \) and \(B = \{ d_1, d_2, \ldots \} \), since in fact \(\{ c_1, \ldots, c_{2n} \} \supseteq \{ a_1, \ldots, a_n \} \) and \(\{ d_1, \ldots, d_{2n} \} \supseteq \{ b_1, \ldots, b_n \} \) for each \(n \). Therefore \(f \) takes \(A \) onto \(B \).

In particular, this gives a negative answer to the question posed by F. Gross in [2]. A more general question remains open, which in one sense is a closer generalization of the first question asked by Erdös:

Let \(A \) and \(B \) be two denumerable, dense subsets of the complex plane. Does there exist an entire function which maps \(A \) onto \(B \) and \(A \) onto \(B \)?

According to the proof given above, we can say only that there exists a function whose restriction to \(A \) gives a one-to-one map from \(A \) to \(B \). The author is grateful to the referee for his helpful comments on this paper.

References

University of California, Berkeley