AN ELEMENTARY PROOF OF INTEGRATION BY PARTS FOR THE PERRON INTEGRAL

LOUIS GORDON AND SIM LASHER

In this note we give a proof of the theorem on integration by parts using the standard definition (see [2] or [3]) of the Perron integral in terms of major and minor functions.\(^1\)

Theorem. Let \(f \) be a Perron integrable function and \(G \) a function of bounded variation on the finite interval \([a, b]\). Let

\[
F(x) = F(a) + \left(P \right) \int_a^x f \, dt, \quad a \leq x \leq b.
\]

Then \(fG \) is Perron integrable on \([a, b]\) and

\[
\left(P \right) \int_a^b fG \, dx = F(x)G(x) \left[b \right]_a^b - \int_a^b F \, dG,
\]

the last integral being Riemann-Stieltjes.

We may assume that \(G(a) = F(a) = 0 \). Since every function \(G \) of bounded variation vanishing at \(x = a \) can be written as a linear combination of nondecreasing continuous functions and nondecreasing jump functions vanishing at \(x = a \), it is sufficient to prove the theorem for these two types of functions. This is done in Lemmas 3 and 4 below.

Lemma 1. The theorem holds when \(G \) is a nondecreasing jump function with a finite number of jumps and \(G(a) = 0 \).

Proof. Since \(G \) is the sum of a finite number of nondecreasing jump functions each having a single jump and vanishing at \(x = a \), and since the lemma holds for each summand, it also holds for \(G \).

Lemma 2. Let \(f \) be a Perron integrable function on the finite interval \([a, b]\). Then there is a constant \(k \) such that for every bounded nondecreas-

\(^1\) It seems curious that a direct proof of the formula based only on the standard definition of the Perron integral does not exist in the literature (see the comment in [2, p. 101]). A proof based upon a definition of the Perron integral involving right and left major and minor functions is given in [4]. Proofs based upon the constructive and the descriptive definition of the special Denjoy integral—an equivalent of the Perron integral—are given respectively in [1] and [5].
Proof of Integration by Parts

Let \(k \) be a constant greater than \(\text{Osc}(F) \), the oscillation on \([a, b]\) of \(F \), the indefinite Perron integral of \(f \). Let \(\psi \) be a major function of \(f \) with \(\text{Osc}(\psi) \leq k \). For \(a \leq u \leq b \), let

\[
\psi_u(x) = \min\{\psi(y) : x \leq y \leq u\} \quad \text{if } a \leq x \leq u
\]
\[
= \psi(x) \quad \text{if } u \leq x \leq b.
\]

We will show that

\[
M(x) = \int_a^b [\psi_u(x) - \psi_u(a)]dG(u)
\]

is a major function of \(fG \) and that

\[
|M(x)| \leq kG(b), \quad a \leq x \leq b.
\]

Since \(\psi_u(x) \) is (uniformly) continuous jointly in \(x \) and \(u \), \(M(x) \) is continuous. Also \(M(a) = 0 \). Let \(a \leq s \leq t \leq b \). Then

\[
M(t) - M(s) = \left(\int_a^s + \int_s^t + \int_t^b \right) [\psi_u(t) - \psi_u(s)]dG(u)
\]
\[
\geq [\psi(t) - \psi(s)]G(t).
\]

Hence, for \(x \ (a < x < b) \) a point of continuity of \(G \), the lower derivate of \(M \) at \(x \)

\[
DM(x) \geq G(x)D\psi(x).
\]

Thus

\[
DM(x) > -\infty \text{ nearly everywhere}
\]

(that is, everywhere in \([a, b]\) with the possible exception of a denumerable subset of \([a, b]\)); and

\[
DM(x) \geq f(x)G(x) \text{ a.e.}
\]

Also, since \(\text{Osc}(\psi_u) \leq \text{Osc}(\psi) \), (3) holds.

In parallel fashion, replacing in (2), \(\psi, \psi_u, \min \), respectively by \(\phi \), \(\phi_u, \max \), where \(\phi \) is a minor function of \(f \) with \(\text{Osc}(\phi) \leq k \), we obtain a minor function \(m \) of \(fG \) satisfying

\[
|m(x)| \leq kG(b), \quad a \leq x \leq b.
\]

Lemma 3. The theorem holds when \(G \) is a nondecreasing bounded jump function such that \(G(a) = 0 \).
Proof. We may write $G = G_1 + G_2$ with G_i ($i = 1, 2$) a nondecreasing bounded jump function such that $G_i(a) = 0$, G_1 having a finite number of jumps, and $G_2(b)$ arbitrarily small. By virtue of Lemmas 1 and 2, there is a major function M and a minor function m of fG such that $M(b) - m(b)$ is arbitrarily small. Hence fG is Perron integrable. It follows from Lemma 2 that

\[(P) \int_a^b fGdx \leq kG(b), \]

k depending only upon f. Using (by Lemma 1) equation (1) for G_1, and inequality (4) for G_2, we see that

\[(P) \int_a^b fGdx - F(b)G(b) + \int_a^b FdG \]

is arbitrarily small and hence equal to zero.

Lemma 4. The theorem holds for G continuous and nondecreasing, and $G(a) = F(a) = 0$.

Proof. Let ψ and ϕ respectively be a major and a minor function of f and let

\[M(x) = \psi(x)G(x) - \int_a^x \phi dG. \]

Then $M = M(x)$ is a major function of fG.

To begin with, M is continuous and $M(a) = 0$. Let $a < x < b$. Let $\epsilon > 0$. We get

\[
M(x + \epsilon) - M(x) = G(x + \epsilon) [\psi(x + \epsilon) - \psi(x)]
+ [\psi(x) - \phi(x)] [G(x + \epsilon) - G(x)]
- \int_x^{x + \epsilon} [\phi(u) - \phi(x)] dG(u),
\]

and

\[
\frac{M(x + \epsilon) - M(x)}{\epsilon} \geq G(x + \epsilon) \frac{\psi(x + \epsilon) - \psi(x)}{\epsilon}
- \int_x^{x + \epsilon} \frac{\phi(u) - \phi(x)}{u - x} \left(\frac{u - x}{\epsilon}\right) dG(u).
\]

Thus, the lower right derivate of M at x

\(^2\) This form of M was suggested by A. Zygmund.
Proof of Integration by Parts

(6) \[D^+M(x) > -\infty \text{ nearly everywhere.} \]

Similarly for \(t < 0 \),

\[
\frac{M(x + t) - M(x)}{t} = G(x + t) \left[\frac{\psi(x + t) - \psi(x)}{t} \right] \\
+ \int_{x+t}^{\infty} \frac{\psi(u) - \psi(x)}{u - x} \left(\frac{u - x}{t} \right) dG(u) \\
- \frac{1}{t} \int_{x+t}^{\infty} [\psi(u) - \phi(u)] dG(u);
\]

and so the lower left derivative of \(M \) at \(x \)

(7) \[D^-M(x) > -\infty \text{ nearly everywhere.} \]

It follows from (6) and (7) that \(DM(x) > -\infty \) nearly everywhere. Finally (as in [4]), for \(t \neq 0 \)

\[
\frac{M(x + t) - M(x)}{t} = G(x) \left[\frac{\psi(x + t) - \psi(x)}{t} \right] \\
+ \frac{1}{t} \int_{x}^{x+t} [\psi(x + t) - \psi(u)] dG(u) \\
+ \frac{1}{t} \int_{x}^{x+t} [\psi(u) - \phi(u)] dG(u) \\
= A + B + C.
\]

Now \(C \geq 0 \). If \(x \) is a point where \(G \) has a finite derivative, then

\[
B = [\psi(x + t) - \psi(x_0)] \frac{G(x + t) - G(x)}{t} \to 0
\]

as \(t \to 0 \), \(x_0 \) being some point between \(x \) and \(x + t \). Therefore

\[DM(x) \geq G(x)f(x) \text{ a.e.} \]

Thus, \(M \) is a major function of \(fG \). Similarly it can be shown that

\[m(x) = \phi(x)G(x) - \int_{a}^{x} \psi dG \]

is a minor function of \(fG \). Now

\[
M(b) - m(b) = [\psi(b) - \phi(b)]G(b) + \int_{a}^{b} (\psi - \phi) dG
\]
is small when \(\psi(b) - \phi(b) \) is small. Hence \(fG \) is Perron integrable; and letting \(\psi \) and \(\phi \) uniformly approach \(F \), (1) follows from (5).

References

