CREATIVE AND WEAKLY CREATIVE SEQUENCES OF r.e. SETS

V. D. VUCKOVIC

1. In [1] Cleave introduced the notion of a creative sequence of r.e. (recursively enumerable) sets and proved that all such sequences are r. (recursively) isomorphic and 1-1 universal for the class of all r.e. sequences of r.e. sets. In [2] and [3] Lachlan introduced an alternate definition and proved its equivalency with the definition of Cleave.

A sequence of r.e. sets E_0, E_1, \ldots is called r.e. iff there is an r. function g such that $E_i = w_{g(i)}$ for every $i \in \mathbb{N}$, where

\[(1.1) \quad x \in w_i \iff \forall T_1(i, x, y).\]

Cleave calls a disjoint r.e. sequence E_0, E_1, \ldots of r.e. sets creative if there is a p. (partial) r. function f such that for every disjoint r.e. sequence $w_{h(i)}, i = 0, 1, \ldots$, (with recursive h) satisfying $E_i \cap w_{h(i)} = \emptyset$, for all i, we have, for every $x \in I(h),$

\[(1.2) \quad f(x) \in \bigcup_{\mu=0}^{\infty} (w_{h(\mu)} \cup E_{\mu}).\]

$I(h)$ is the set of indices of h in the standard enumeration

\[(1.3) \quad \phi_0, \phi_1, \phi_2, \ldots,\]

of all r.p. functions, i.e.,

\[(1.4) \quad \phi_i(x) \simeq U(\mu T_1(i, x, y)).\]

Lachlan, in [2], proceeds as follows. Let first g be recursive and such that

\[\forall T_2(i, n, x, y) \leftrightarrow \forall T_1(g(i, n), x, y).\]

Define the double sequence $W_{i,n}$ of r.e. sets by $W_{i,n} = w_{g(i,n)}$.

After Lachlan, an r.e. sequence E_0, E_1, \ldots of r.e. sets is creative iff there is a recursive f such that for all i

\[(1.5) \quad W_{i,f(i)} \cup E_{f(i)} \subseteq \bigcup_{\mu=0}^{\infty} (W_{i,\mu} \cap E_{\mu}).\]

Received by the editors March 1, 1967.
Both Cleave’s and Lachlan’s definition seem to demand very much to be satisfied: (1.1) involves all indices \(x \) of \(h \), and (1.5) all indices \(i \) (which are, in essence, indices of all r.e. sequences).

In this paper we propose a very weak definition of a creative sequence and prove its equivalency with the definition of Cleave (and so with the definition of Lachlan). Moreover, our definition is a direct generalization of the corresponding Smullyan’s definition of a doubly weakly creative pair (Smullyan [4, p. 114]).

2. Obviously, a sequence \(A_0, A_1, \cdots \) of r.e. sets is r.e. iff the predicate \(x \in A_y \) is r.e. Let \(\gamma \) be recursive and such that

\[
V \ T_2(u, \mu, x, y) \leftrightarrow V \ T_1(\gamma(\mu, u), x, y).
\]

For every r.e. predicate \(Q(\mu, x) \) there is an \(e \in \mathbb{N} \) such that \(Q(\mu, x) \leftrightarrow \forall y \ T_2(e, \mu, x, y) \). With \(Q(\mu, x) \leftrightarrow x \in A_\mu \) we conclude: every r.e. sequence of r.e. sets can be represented as a sequence \(w_{\gamma(\mu, e)}(\mu) \) \(\mu = 0, 1, \cdots \) for some \(e \).

By the recursion theorem, for every r.e. predicate \(Q(\mu, z, x, u) \) there is a recursive \(\phi \) such that for all \(i \in \mathbb{N} \),

\[
Q(\mu, i, x, \phi(i)) \leftrightarrow V \ T_2(\phi(i), \mu, x, y).
\]

i.e., by (2.1),

\[
Q(\mu, i, x, \phi(i)) \leftrightarrow V \ T_1(\gamma(\mu, \phi(i)), x, y).
\]

Lemma 2.1. Let \(A_0, A_1, \cdots \) be an r.e. sequence of r.e. sets and let \(f \) be any r. function. Then there is an r. function \(\phi \) such that, for every \(i \in \mathbb{N} \),

\[
i \in A_\mu \rightarrow w_{\gamma(\mu, \phi(i))} = \{f(\phi(i))\};
\]

\[
i \notin A_\mu \rightarrow w_{\gamma(\mu, \phi(i))} = \emptyset
\]

Proof. (\(\{a\} \) denotes the singleton whose unique element is \(a \); \(\emptyset \) is the empty set.) In (2.3) take

\[
Q(\mu, z, x, u) \leftrightarrow z \in A_\mu \land x = f(u).
\]

From this lemma we obtain immediately.

Lemma 2.2. Let \(A_0, A_1, \cdots \) be a disjoint r.e. sequence of r.e. sets. Then there is an r. function \(\phi \) such that, for every \(i \in \mathbb{N} \),

\[
i \in A_\mu \rightarrow w_{\gamma(\mu, \phi(i))} = \{f(\phi(i))\} \text{ and all others } w_{\gamma(\nu, \phi(i))} \text{ are empty for } \nu \neq \mu, \text{ and}
\]

\[
i \notin A_\mu \rightarrow \text{all } w_{\gamma(\mu, \phi(i))} \text{ are empty.}
\]
Definition 2.1. An r.e. sequence \(A_0, A_1, \ldots \) of r.e. sets is meager iff either all \(A_\mu \) are empty or all but one are empty and this one, which is not empty, is a singleton.

Definition 2.2. A disjoint r.e. sequence \(A_0, A_1, \ldots \) of r.e. sets is weakly creative under an r. function \(f \) iff, for all \(i \in \mathbb{N} \) for which the sequence \(w_{\gamma(0,i)}, w_{\gamma(1,i)}, \ldots \) is meager,

(a) in case all \(w_{\gamma(\mu,i)} \) are empty we have

\[
(2.8) \quad f(i) \in \bigcup_{\mu=0}^{\infty} A_\mu;
\]

(b) in case \(w_{\gamma(n_1,i)} \) is not empty and \(w_{\gamma(n_0,i)} \cap A_{n_0} = \emptyset \), we have

\[
(2.9) \quad f(i) \in w_{\gamma(n_0,i)}.
\]

3. We prove some theorems from which will follow the equivalency of the weak creativity and the creativity in the sense of Cleave.

Theorem 3.1. If the sequence \(E = E_0, E_1, \ldots \) is weakly creative then every disjoint r.e. sequence \(A = A_0, A_1, \ldots \) of r.e. sets is reducible to \(E \).

Proof. Let \(E \) be creative under \(f \). By Lemma 2.2 there is an r. function \(\phi \) such that for every sequence \(\Omega_i = w_{\gamma(0,\phi(i))}, w_{\gamma(1,\phi(i))}, \ldots \), we have

\[
(3.1) \quad i \in A_\mu \rightarrow \Omega_i \text{ is meager and } w_{\gamma(\mu,\phi(i))} = \{f(\phi(i))\}, \text{ and}
\]

\[
(3.2) \quad i \in A_\mu \rightarrow \Omega_i \text{ is meager and all } w_{\gamma(\mu,\phi(i))} \text{ are empty}.
\]

We shall prove that \(\psi = f(\phi) \) reduces \(A \) to \(E \).

Suppose first that \(i \in A_\mu \). Then \(w_{\gamma(\mu,\phi(i))} = \{f(\phi(i))\} \) and, therefore,

\[
(3.3) \quad f(\phi(i)) \in w_{\gamma(\mu,\phi(i))}.
\]

If now \(w_{\gamma(\mu,\phi(i))} \cap E_\mu = \emptyset \) we will have, by (2.9), \(f(\phi(i)) \in w_{\gamma(\mu,\phi(i))} \) in contradiction to (3.3). Therefore, \(f(\phi(i)) \in E_\mu \).

To prove the opposite inclusion

\[
(3.4) \quad f(\phi(i)) \in E_\mu \rightarrow i \in A_\mu
\]

suppose, contrary, that there is a \(q \in \mathbb{N} \) such that \(f(\phi(i)) \in E_q \) but \(i \notin A_q \).

Now, if \(i \in \bigcup_{\mu=0}^{\infty} A_\mu \), \(\Omega_i \) consists of empty sets only, and (2.8) gives

\[
\text{f(\phi(i))} \notin \bigcup_{\mu=0}^{\infty} E_\mu - \text{a contradiction. So, there is an } s \in \mathbb{N} \text{ such that } i \in A_s. \text{ By the first part of the proof we obtain } f(\phi(i)) \in E_s. \text{ As } E_s \cap E_q = \emptyset \text{ for } q \neq s, \text{ it follows } s = q.
\]

So we have proved

\[
(3.5) \quad i \in A_\mu \rightarrow \psi(i) \in E_\mu
\]

i.e. that \(A \) is r. reducible to \(E \).
Theorem 3.2. If the creative sequence \(A = A_0, A_1, \ldots \), is reducible to \(B = B_0, B_1, \ldots \), then \(B \) is a creative sequence.

Proof. Let \(A \) be creative under \(\rho \). Therefore, for every disjoint r.e. sequence \(w_h(\mu), \mu = 0, 1, \ldots \), satisfying \(A_\mu \cap w_h(\mu) = \emptyset \) for all \(\mu \), if \(x \in I(h) \) then
\[
\rho(x) \notin \bigcup_{\mu=0}^{\infty} (w_h(\mu) \cup A_\mu).
\]

If \(f \) reduces \(A \) to \(B \) then
\[
A_\mu = f^{-1}(B_\mu), \quad \mu = 0, 1, \ldots.
\]

Denote by \(\psi \) the r. function such that for all \(x \in \mathbb{N} \)
\[
w_{\psi(x)} = f^{-1}(w_x).
\]

There is a recursive function \(\phi \) such that if \(x \in I(F) \) then \(\phi(x) \in I(\psi(F)) \) (the operation of composition being effective). We shall prove that \(B \) is creative under \(\chi = f(\rho(\phi)) \).

Let \(w_{k(0)}, w_{k(1)}, \ldots \), be any disjoint r.e. sequence of r.e. sets such that
\[
w_{k(\mu)} \cap B_\mu = \emptyset \quad \text{for all} \ \mu,
\]
and let \(x \) be an index of the r. function \(k \). We have to prove
\[
\chi(x) \notin \bigcup_{\mu=0}^{\infty} (w_{k(\mu)} \cup B_\mu).
\]

By (3.9), using (3.7) and (3.8), we have
\[
A_\mu \cap w_{\psi(k(\mu))} = \emptyset, \quad \text{for all} \ \mu.
\]
As \(A \) is creative and as \(\phi(x) \in I(\psi(k)) \), we get by (3.6)
\[
\rho(\phi(x)) \notin \bigcup_{\mu=0}^{\infty} (A_\mu \cup w_{\psi(k(\mu))}).
\]

From (3.7), (3.8) and (3.12) follows now (3.10).

Corollary 3.2.1. If a sequence \(A \) is weakly creative it is creative.

Proof. Every creative sequence is reducible to \(A \) by Theorem 3.1. By Theorem 3.2, \(A \) is creative.

Theorem 3.3. If a weakly creative sequence \(A = A_0, A_1, \ldots \), is 1-1 reducible to \(B = B_0, B_1, \ldots \), then \(B \) is a weakly creative sequence.

Proof. Let \(A \) be weakly creative under \(\phi \) and let the 1-1 r. function

\[
\rho(x) \notin \bigcup_{\mu=0}^{\infty} (w_h(\mu) \cup A_\mu).
\]
f reduce A to B. There is a recursive ψ such that, for all x ∈ N,
\[w_\gamma(\mu, \psi(z)) = f^{-1}(w_\gamma(\mu, z)), \quad \mu = 0, 1, \ldots, \]

(Take in (2.3) Q(μ, z, x, u) ⇔ x ∈ f^{-1}(w_\gamma(\mu, u)) \land z = z.)

Let \(w_\gamma(0, i), w_\gamma(1, i), \ldots \), be a meager sequence. Then \(w_\gamma(0, \psi(i)) \), \(w_\gamma(1, \psi(i)) \), \(\ldots \), is meager too.

Suppose first that \(w_\gamma(n_0, i) \neq \emptyset \) and that \(w_\gamma(n_0, i) \cap \mathcal{B}_{n_0} = \emptyset \). Then \(w_\gamma(n_0, \psi(i)) \cap \mathcal{A}_{n_0} = \emptyset \) and, as \(f \) is 1-1, \(w_\gamma(n_0, \psi(i)) \) is a singleton. Then \(\phi(\psi(i)) \notin w_\gamma(n_0, \psi(i)) \) and, as
\[y \in w_\gamma(n_0, \psi(i)) \iff f(y) \in w_\gamma(n_0, i), \]
we obtain \(f(\phi(\psi(i))) \notin w_\gamma(n_0, i) \).

If all \(w_\gamma(\mu, i) \) are empty, from \(\phi(\psi(i)) \notin \bigcup_{\mu = 0}^{\infty} A_\mu \) we obtain \(f(\phi(\psi(i))) \notin \bigcup_{\mu = 0}^{\infty} B_\mu \).

This proves that B is weakly creative under \(f(\phi(\psi)) \).

Corollary 3.3.1. Every creative sequence is weakly creative.

Proof. By part (3) of Corollary 4 of Cleave's paper [1], every weakly creative sequence is 1-1 r.e. reducible to every creative sequence. By Theorem 3.3 follows the statement.

Corollaries 3.2.1 and 3.3.1 give

Theorem 3.4. A sequence is weakly creative iff it is creative.

We point out that using the Definition 3.4 of the paper [2] of Lachlan one can give a definition of M-creativity (akin to Lachlan's definition of M-coproductivity) which is similar to our definition of weak creativity, but unnecessarily complicated. Namely, starting from the sequence \(A = A_0, A_1, \ldots \), Lachlan constructs the sequence \(A^* = A_0^*, A_1^*, \ldots \), where
\[A_\mu^* = A_\mu \quad \text{if } A_\mu \text{ is a singleton}, \]
\[= \emptyset \quad \text{otherwise}. \]

With this definition, A will be called M-creative under f iff A is a r.e. sequence of r.e. sets and iff for all i
\[\bigcup_{\mu = 0}^{\infty} (W_{i, \mu} \cap A_\mu^*) = \emptyset \rightarrow \{ f(i) \text{ is defined and } W_{i, f(i)} = A_i = \emptyset \}. \]

(\(W_{i, f(i)} \) is as in §1.) As M-creativity is equivalent with creativity it is equivalent with weak creativity.

On the ground of the Theorem 3.4 one can propose the following
definition of creativity, which we shall call S-creativity:

A disjoint r.e. sequence $A = A_0, A_1, \ldots$, of r.e. sets is S-creative under a recursive f iff for every disjoint sequence $w_{\gamma(0,i)}, w_{\gamma(1,i)}, \ldots$, for which $A_\mu \cap w_{\gamma(\mu,i)} = \emptyset$ for all μ, we have

$$f(i) \in \bigcup_{\mu=0}^{\infty} (A_\mu \cup w_{\gamma(\mu,i)}).$$

It is not difficult to prove that a sequence is S-creative iff it is creative. The implication “S-creative \rightarrow creative” is trivial. The converse implication is obtained through a theorem, similar to Theorem 3.3.

References