Dual functions and heat expansions
HTML articles powered by AMS MathViewer
- by L. R. Bragg
- Proc. Amer. Math. Soc. 18 (1967), 402-407
- DOI: https://doi.org/10.1090/S0002-9939-1967-0213825-3
- PDF | Request permission
References
- L. R. Bragg, The radial heat polynomials and related functions, Trans. Amer. Math. Soc. 119 (1965), 270–290. MR 181769, DOI 10.1090/S0002-9947-1965-0181769-4
- Louis R. Bragg, The radial heat equation and Laplace transforms, SIAM J. Appl. Math. 14 (1966), 986–993. MR 208188, DOI 10.1137/0114080
- Deborah Tepper Haimo, Functions with the Huygens property, Bull. Amer. Math. Soc. 71 (1965), 528–532. MR 178313, DOI 10.1090/S0002-9904-1965-11318-0
- Deborah Tepper Haimo, Expansions in terms of generalized heat polynomials and of their Appell transforms, J. Math. Mech. 15 (1966), 735–758. MR 0196148 W. Magnus and F. Oberhettinger, Formulas and theorems for functions of mathematical physics, Chelsea, New York, 1949.
- David Vernon Widder, The Laplace Transform, Princeton Mathematical Series, vol. 6, Princeton University Press, Princeton, N. J., 1941. MR 0005923
- D. V. Widder, Some analogies from classical analysis in the theory of heat conduction, Arch. Rational Mech. Anal. 21 (1966), 108–119. MR 184559, DOI 10.1007/BF00266570
- A. H. Zemanian, Distribution theory and transform analysis. An introduction to generalized functions, with applications, McGraw-Hill Book Co., New York-Toronto-London-Sydney, 1965. MR 0177293
Bibliographic Information
- © Copyright 1967 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 18 (1967), 402-407
- MSC: Primary 44.30
- DOI: https://doi.org/10.1090/S0002-9939-1967-0213825-3
- MathSciNet review: 0213825