A NOTE ON BERNSTEIN POLYNOMIAL TYPE APPROXIMATIONS

D. H. TUCKER

The Bernstein polynomial of order \(n \) for a function \(f \) defined on \([0, 1]\) is defined by

\[
B_n(f(t)) = \sum_{m=0}^{n} \binom{n}{m} t^m (1 - t)^{n-m} f\left(\frac{m}{n}\right) = \sum_{m=0}^{n} \binom{n}{m} \Delta^{n-m} f\left(\frac{m}{n}\right)
\]

where

\[
\Delta^{n-m} = \sum_{r=0}^{n-m} \binom{n-m}{r} (-1)^{n-m-r}.
\]

These polynomials provide a method for the uniform approximation of a function \(f \) which is continuous on the interval \([0, 1]\) and has values in a Banach space \(X \) by use of the function sequence \(\{t^i\}_{i=0}^{\infty} \). Given a sequence \(\Phi = \{\phi_i\}_{i=0}^{\infty} \) of continuous functions from \([0, 1]\) into \(B[X, Y] \), the space of bounded linear transformations from a Banach space \(X \) into a Banach space \(Y \), we define

\[
B_n(\Phi, f) = \sum_{m=0}^{n} \binom{n}{m} \Delta^{n-m} \phi_m f\left(\frac{m}{n}\right)
\]

to be the \(\Phi \)-Bernstein approximation of \(f \) of order \(n \). In this note we shall consider the question of uniform convergence of such approximations.

Definition. The sequence \(\Phi \) is said to satisfy condition A if there exists an \(M > 0 \) such that if \(\{x_m\}_{m=0}^{\infty} \) is a bounded sequence in \(X \), then

\[
\left\| \sum_{m=0}^{n} \binom{n}{m} \Delta^{n-m} \phi_m \cdot x_m \right\|_{C(Y)} \leq M \sup_{(m)} \|x_m\| \quad \text{for all } n \geq 0;
\]

where \(\| \cdot \|_{C(Y)} \) denotes the uniform norm on the function space \(C(Y) \) of continuous functions from \([0, 1]\) into \(Y \).

Theorem. The following two statements are equivalent:

1. \(B_n(\Phi, f) \) converges in \(C(Y) \) for each \(f \) in \(C(X) \).
2. \(\Phi \) satisfies condition A.

Proof. We note first that condition A identifies \(\Phi \) as a Hausdorff moment sequence from \(X \) into \(C(Y) \) [1, Lemma 8]. (Reference 8 in

Received by the editors April 14, 1966.

492
Suppose (2) holds, i.e., Φ is a Hausdorff moment sequence from X into $C(Y)$. By the proof of the first part of [1, Theorem 3], there exists a continuous linear transformation T from $C(X)$ into $C(Y)$ such that, for each g in $C(X)$, $T(g)(s) = \int_0^1 dtK(s, t) \cdot g(t)$ and such that $T(f\cdot x)(s) = \int_0^1 dtK(s, t) \cdot f(t) \cdot x$ for each f in $C(R)$ and each x in X, where R denotes the real field and such that, furthermore, $\phi_m(s) \cdot x = T(t^m \cdot x)$ for $m = 0, 1, 2, \cdots$ and each x in X. We then have that

$$B_n(\Phi, f) = \sum_{m=0}^{n} \binom{n}{m} [\Delta^{n-m}\phi_m] \cdot f \left(\frac{m}{n} \right)$$

and since T is continuous and $B_n(f)$ converges in norm to f, we have that $B_n(\Phi, f)$ converges in norm to $T(f) = \int_0^1 dtK \cdot f$, and hence (1) holds.

Now suppose (1) holds. It is easily seen that for each n,

$$B_n(\Phi, f) = \sum_{m=0}^{n} \binom{n}{m} [\Delta^{n-m}\phi_m] \cdot f \left(\frac{m}{n} \right)$$

defines a continuous linear transformation from $C(X)$ into $C(Y)$ since it is the finite sum of such transformations. Since $\{B_n(\Phi, f)\}_{n=0}^{\infty}$ converges for each f in $C(X)$, we have by the uniform boundedness principle that there exists a constant $M > 0$ such that for each f in $C(X)$ and each $n = 0, 1, 2, \cdots$,

$$\|B_n(\Phi, f)\|_{C(Y)} = \left\| \sum_{m=0}^{n} \binom{n}{m} [\Delta^{n-m}\phi_m] \cdot f \left(\frac{m}{n} \right) \right\|_{C(Y)} \leq M\|f\|_{C(X)}.$$

Now suppose a bounded sequence $\{x_m\}_{m=0}^{\infty}$ of points in X is given. There exists a polygonal function P in $C(X)$ which has the values $P(m/n) = x_m$ for $m = 0, 1, \cdots, n$ and P is defined to be linear otherwise. $\|P\|_{C(X)} = \max_{0 \leq m \leq n} \|x_m\|$ where the maximum is taken over $m = 0, \cdots, n$. Taking P for f above gives

$$\left\| \sum_{m=0}^{n} \binom{n}{m} [\Delta^{n-m}\phi_m] \cdot x_m \right\|_{C(Y)} \leq M\max_{0 \leq m \leq n} \|x_m\| \leq M\sup_{(m)} \|x_m\|$$

and (2) holds.

Corollary. For the case in which Y is X, (then each ϕ_m is in $C(B[X, X])$) the following two statements are equivalent:
(1*) \(B_n(\Phi, f) \) converges to \(f \) for each \(f \) in \(C(X) \).

(2*) \(\phi_m(t) = t^m \) for \(m = 0, 1, \ldots \).

Proof. Suppose (1*) holds, then by the theorem, condition A is satisfied and there exists \(T \) such that \(T(t^m \cdot x) = \phi_m(x) \) for each \(m \), but then by (1*) \(T(f)(s) = \lim_{n \to \infty} B_n(\Phi, f) = f(s) \) for each \(f \) in \(C(X) \) and hence \(T(t^m \cdot x)(s) = s^m \cdot x = \phi_m(s) \cdot x \) for each \(x \) and hence \(\phi_m(s) = s^m \) for all \(m \).

The proof that (2*) implies (1*) is a trivial modification of the classical proof that \(B_n(f) \) converges to \(f \) for each \(f \) in \(C(R) \).

Bibliography

The University of Utah