Grothendieck groups and divisor groups
HTML articles powered by AMS MathViewer
- by Robert M. Fossum
- Proc. Amer. Math. Soc. 18 (1967), 560-565
- DOI: https://doi.org/10.1090/S0002-9939-1967-0217148-8
- PDF | Request permission
References
- Maurice Auslander and Oscar Goldman, Maximal orders, Trans. Amer. Math. Soc. 97 (1960), 1–24. MR 117252, DOI 10.1090/S0002-9947-1960-0117252-7 N. Bourbaki, Algèbre commutative, Chapitre 4, Hermann, Paris, 1961. —, Algèbre commutative, Chapitre 7, Hermann, Paris, 1965.
- A. Heller and I. Reiner, Grothendieck groups of orders in semisimple algebras, Trans. Amer. Math. Soc. 112 (1964), 344–355. MR 161889, DOI 10.1090/S0002-9947-1964-0161889-X
- A. Heller and I. Reiner, Grothendieck groups of integral group rings, Illinois J. Math. 9 (1965), 349–360. MR 175935
- Oscar Goldman, Quasi-equality in maximal orders, J. Math. Soc. Japan 13 (1961), 371–376. MR 162825, DOI 10.2969/jmsj/01340371
- John A. Riley, Reflexive ideals in maximal orders, J. Algebra 2 (1965), 451–465. MR 190171, DOI 10.1016/0021-8693(65)90006-2
Bibliographic Information
- © Copyright 1967 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 18 (1967), 560-565
- MSC: Primary 18.20
- DOI: https://doi.org/10.1090/S0002-9939-1967-0217148-8
- MathSciNet review: 0217148