COMPARISON AND APPLICATION OF TWO GREEN’S MATRICES

A. L. DEAL, III

1. Purpose. The purpose of this paper is to demonstrate a close but not obvious similarity between two Green’s matrices due respectively to W. M. Whyburn and R. H. Cole and then to apply these matrices to the solution of a difference system.

2. Whyburn’s Green’s matrix. Whyburn [1] has given a Green’s matrix,

\[G_w(x, t) = \begin{cases}
U(x)H_1(U) \left[AU(a) + \int_a^t F(s)U(s)ds \right] U^I(t), & t < x, \\
- U(x)H_1(U) \left[BU(b) + \int_t^b F(s)U(s)ds \right] U^I(t), & t > x,
\end{cases} \]

for the system,

\[
\begin{align*}
(1) & \quad L_1(Y) = Y'(x) + P(x)Y(x) = 0, \\
(2) & \quad H_1(Y) = AY(a) + BY(b) + \int_a^b F(x)Y(x)dx = 0.
\end{align*}
\]

This Green’s matrix yields a solution of the nonhomogeneous \(L_1(Y) = Q(x) \), \(H_1(Y) = D \), assuming \(A, B, D \) constant \(n \times n \) matrices and \(P, Q, F \) matrices of Lebesgue summable functions. \(U \) is nonsingular on \([a, b]\) and \(U'(x) + P(x)U(x) = 0 \). The superscript \(I \) is used to indicate matrix inverse as opposed to operator inverse.

Whyburn [2] has shown that if we replace the boundary condition \(H_1(Y) = D \) with the more general

\[
\sum_{d_i \in q} A_iY(d_i) + \int_a^b F_1(x)Y(x)dx = D_1,
\]

where \(q \) is a first species subset of \([a, b]\), then there are matrices \(A, B, D, \) and \(F(x) \) such that the nonhomogeneous system associated with (1), (2) is equivalent to this new system.

Received by the editors July 15, 1966.
\[G_c(x, t) = \int_a^t U(x)H^I_2(U)dF(s)U(s)U^I(t), \quad t < x, \]
\[= - \int_a^b U(x)H^I_2(U)dF(s)U(s)U^I(t), \quad t > x, \]
yields a solution of
\begin{align*}
(4) & \quad L_2(Y) = Y'(x) = A(x)Y(x) + B(x), \\
(5) & \quad H_2(Y) = \sum_{i=1}^{m} W_i Y(a_i) + \int_a^b W(x)Y(x)dx = D,
\end{align*}
while being completely determined by the homogeneous \(L_2(Y) = 0, H_2(Y) = 0 \), a different system from (1), (2). \(a = a_1 < a_2 < \cdots < a_m = b \), and \(F(s) \) is the sum of \(F_2(s) = \int_a^b W(x)dx \) and the step-function \(F_1(s) \), with \(F_1(a) = 0 \) and \(F_1(a^+) - F_1(a^-) = W_h \).

The reader will not find it unduly difficult to show that
\[G_c(x, t) = U(x)H^I_2(U) \left[\sum_{i=1}^{p} W_i U(a_i) + \int_a^t W(s)U(s)ds \right]U^I(t), \quad t < x, \]
\[= - U(x)H^I_2(U) \left[\sum_{i=1}^{m} W_i U(a_i) + \int_t^b W(s)U(s)ds \right]U^I(t), \quad t > x, \]
where \(a_p \leq t \leq a_{p+1} \).

4. Careful examination of Whyburn's results [2] reveals that for each system (4), (5) there are several equivalent systems of the type \(L_1(Y) = Q(x), H_1(Y) = D \). One of particular interest is found by defining \(R(x) = \sum_i W_i A(x) \) on \(a_j < x \leq a_{j+1} \), so that
\begin{align*}
\int_a^b R(x)Y(x)dx &= \sum_{j=1}^{m-1} \sum_{i=1}^{j} W_i \int_{a_i}^{a_{i+1}} \left[Y'(x) - B(x) \right]dx \\
&= \sum_{j=1}^{m-1} \sum_{i=1}^{j} W_i \left[Y(a_{j+1}) - Y(a_j) \right] \\
&\quad - \sum_{j=1}^{m-1} \sum_{i=1}^{j} W_i \int_{a_j}^{a_{j+1}} B(x)dx \\
&= - \sum_{i=1}^{m} W_i Y(a_i) + \sum_{i=1}^{m} W_i Y(b) \\
&\quad - \sum_{j=1}^{m-1} \sum_{i=1}^{j} W_i \int_{a_j}^{a_{j+1}} B(x)dx.
\end{align*}
System (4), (5) is now seen to be equivalent to the system which results from replacing the boundary condition \(H_1(Y) = D \) by

\[
H_3(Y) = \sum_{i=1}^{m} W_i Y(b) + \int_{a}^{b} \left[W(x) - R(x) \right] Y(x) dx = D
\]

(6)

\[
+ \sum_{j=1}^{m-1} \sum_{i=1}^{j} W_i \int_{a_j}^{a_{j+1}} B(x) dx,
\]

which is a special case of Whyburn’s endpoint-integral condition.

It can be shown that Whyburn’s Green’s matrix for \(L_1(Y) = 0, H_3(Y) = 0 \) is given by

\[
G_W(x, t) = U(x) H_2^I(U) \left[\int_{a}^{t} W(x) U(x) dx + \sum_{i=1}^{p} W_i U(a_i) \right.
\]

\[
- \sum_{1}^{p} W_i U(l) \right] U^I(t), \quad t < x,
\]

\[
= - U(x) H_2^I(U) \left[\int_{t}^{b} W(x) U(x) dx + \sum_{p+1}^{m} W_i U(a_i) \right.
\]

\[
+ \sum_{1}^{p} W_i U(l) \right] U^I(t), \quad t > x,
\]

which, since (1), (6) and (4), (5) are equivalent, also provides the solution of (4), (5).

It is noteworthy that \(G_W \) and \(G_C \) share the discontinuity

\[
G(x, x^-) - G(x, x^+) = E
\]

along the line \(x = t \), and, while \(G_W \) is otherwise continuous on \([a, b] \times [a, b]\), \(G_C \) has discontinuities along the lines \(t = a_1, \ldots, a_m \), given by

\[
G_C(x, a_i^+) - G_C(x, a_i^-) = U(x) H_2^I(U) W_{a_i}, \quad \text{where we interpret } G_C(x, a_i^-) \text{ and } G_C(x, a_i^+) \text{ as } 0.
\]

The terms \(\pm \sum_i W_i U(l) \), which in \(G_W \) absorb those latter mentioned discontinuities of \(G_C \), are readily seen to be the only actual difference between \(G_W \) and \(G_C \).

5. **The difference system.** Several authors, including Whyburn [4], have given Green’s matrices which yield the solution of the difference system

\[
(Y_{i+1} - Y_i)/(x_{i+1} - x_i) = R_i Y_i + S_i, \quad i = 1, 2, \ldots, m - 1,
\]

(7)

\[
A Y_0 + B Y_m = C.
\]

(8)

A boundary condition more nearly analogous to \(H_1(Y) = D \) or (5) is
The system (7), (9) is more complex, and we now offer a theorem which will bring the powerful theory of Whyburn (Cole) to bear on this system.

Suppose that for \(0 \leq x_i \leq x_{i+1} - x_i\), the matrix \(z_iR_i + E\) is nonsingular. Let \(U_0 = E\) and for \(i > 0\),

\[
U_i = \prod_{j=i-1}^{0} [(x_{j+1} - x_j)R_j + E],
\]

and assume \(\sum_0^m A_j U_j\) is nonsingular (necessary and sufficient for the uniqueness of solution of (7), (9)).

Theorem. If \(P^*(x) = -R_i[(x - x_i)R_i + E]^T\) and \(Q^*(x) = -(x - x_i)S_i + S_i\) for \(x_i \leq x \leq x_{i+1}\), then the Whyburn's Green's matrix for

\[
Y^*(x)' + P^*(x)Y^*(x) = 0,
\]
\[
H^*(Y^*) = \sum_0^m A_j Y^*(x_j) = 0
\]

yields the unique solution \(Y^*\) of

\[
Y^*(x)' + P^*(x)Y^*(x) = Q^*(x),
\]
\[
H^*(Y^*) = \sum_0^m A_j Y^*(x) = C
\]

and \(Y_i = Y^*(x_i)\) is the unique solution of (7), (9).

Remark. The requirement that \(z_iR_i + E\) be nonsingular is not so restrictive as it may appear. If, for example, (7), (9) is an approximation to a system such as (1), (2), with (after Whyburn [4])

\[
R_i = \int_{x_i}^{x_{i+1}} P(x)dx/(x_{i+1} - x_i),
\]

then the required nonsingularity is automatic for sufficiently fine subdivision of \([a, b]\).

Proof of Theorem. Let

\[
Y^*(x) = Y_i + [Y_{i+1} - Y_i](x - x_i)/(x_{i+1} - x_i)
\]

\[
= [(x - x_i)R_i + E]Y_i + (x - x_i)S_i
\]
so that \(Y^*(x) = R_i Y_i + S_i \) on \(x_i < x < x_{i+1} \). Solving for \(Y_i \), we get

\[
Y_i = [(x - x_i)R_i + E]^I Y^*(x) - [(x - x_i)R_i + E]^I (x - x_i)S_i
\]

so that

\[
Y^*(x) = R_i [(x - x_i)R_i + E]^I Y^*(x)
- R_i [(x - x_i)R_i + E]^I (x - x_i)S_i + S_i,
\]

which is to say that \(Y^* + P^* Y^* = Q^* \).

If

\[
U^*(x) = [(x - x_i)R_i + E] \prod_{j=i-1}^0 [R_j (x_{j+1} - x_j) + E]
\]
on \(x_i < x < x_{i+1} \), then \(U^*(x) + P^*(x) U^*(x) = 0 \) and \(U^* \) is nonsingular an \([a, b]\), and \(U^*(x_i) = U_i \) so that \(\det [H^*(U^*)] = \det [\sum_0^m A_j U_j] \neq 0 \) which implies the incompatibility of the homogeneous system, and is sufficient for the existence of Whyburn’s Green’s matrix for (10), (11).

One easily verifies that \(Y_i = \bar{Y}^*(x_i) \) is the required solution of (7), (9), and this completes the proof.

Remark. One can show that if \(x_s < t < x_{s+1} \) and \(x_i < x < x_{i+1} \), then

\[
G_w(x, t) = [(x - x_i)R_i + E] G_{is} [(x_{s+1} - x_i)R_s + E] [(t - x_i)R_s + E]^I
- [(x - x_i)R_i + E] U_i H_3^I(U) \sum_{j=0}^s A_j,
\]

(where \(G_{is} \) is a difference Green’s matrix yielding solution of (7), (9)) holds for all \((x, t)\) except on the interiors of triangles with vertices of the form \(\{(x_i, x_i), (x_{s+1}, x_{s+1}), (x_{s+1}, x_i)\} \).

The author regrets that he is able to establish the above assertion only after a laborious computation, which does not seem appropriate for inclusion here. The above-mentioned Green’s matrix is

\[
G_{is} = \sum_{j=0}^s U_i H_3^I(U) A_j U_j U_{s+1}^I, \quad i > s,
\]

\[
- \sum_{j=s+1}^m U_i H_3^I(U) A_j U_j U_{s+1}^I, \quad i \leq s,
\]

and it is this writer’s intention to make known certain interesting properties of this matrix at a later date.

Bibliography

We shall study the asymptotic behavior for $t \to \infty$ of solutions of the following nonlinear differential equation:

\[
(1) \quad u'' + f(t, u) = 0.
\]

We suppose that $f(t, u)$ satisfies the following conditions:

H-1: $f(t, u)$ is continuous in $D: t \geq 0, -\infty < u < \infty$.

H-2: The derivative f_u exists on D and satisfies $f_u(t, u) > 0$ on D.

H-3: $|f(t, u(t))| \leq f_u(t, 0)|u(t)|$ on D.

An important class of functions $f(t, u)$ which satisfy conditions H-1, 2, 3 is the class of twice continuously differentiable functions $f(t, u)$ which are odd and strictly monotone in u with $f_{uu} \geq 0$ for $u < 0$ and $f_{uu} \leq 0$ for $u > 0$. Nonlinear eigenvalue problems involving this class of functions have been studied extensively by G. H. Pimbley [1].

For the case $f(t, u) = \pm t^n u^n$, R. Bellman [2] has given an exhaustive treatment of the asymptotic behavior of proper solutions (i.e., solutions which exist and have continuous derivatives for $t \geq t_0$). For the case $f(t, u) = a(t)u^{2n+1}$ several results on asymptotic behavior exist depending on properties of $a(t)$. References can be found in the papers of P. Waltman [3] and R. A. Moore and Z. Nehari [4].

Our basic result is that there exist solutions of (1) which approach those of $u'' = 0$. More precisely, we prove the