THE MOD 2 HOMOLOGY OF THE IMAGE OF AN EXACTLY 2 TO 1 MAP FROM A SPHERE

GEORGE W. HENDERSON

The real projective space and the space formed by pinching together the north and south poles of a 2 sphere, S^2, are both the image of S^2 under an exactly 2 to 1 map. (A map is said to be exactly 2 to 1 if it is onto, continuous, and the inverse of each point is exactly two points.) Clearly these spaces are not homeomorphic; however, from the standpoint of additive mod 2 homology, they are indistinguishable. In fact, from the mod 2 standpoint there is only one type of image.\(^1\) Precisely,

Theorem. Suppose $f: Y \rightarrow X$ is a 2-1 and Y is a mod 2 homology sphere. Then $H_i(X, \mathbb{Z}_2)$ is \mathbb{Z}_2 if $0 \leq i \leq \phi(Y)$, and 0 otherwise.

Here we shall denote the homology dimension of a space Y by $\phi(Y)$ and abbreviate “exactly 2 to 1 map” by 2-1.

Briefly, one could say if there exists a 2-1 from an n-sphere onto a space, then that space has the mod 2 homology of the n-dimensional projective space.

One easy application of the theorem is the

Lemma. The circle is the only sphere which can be mapped by 2-1 onto a sphere.

The theorem is proved using a characterization of 2-1 described by Černavskij [1] and the author [2] which generalize the works of P. Civin [3]. Inserted before the proof will be a brief summary of these works and some pertinent facts from Smith theory. All spaces are assumed to be Hausdorff and the homology group to be Čech with the integers mod 2 as coefficients.

Suppose that $f: Y \rightarrow X$ is 2-1 and Y is a mod 2 homology manifold, then there exists an open set $U \subset Y$ together with an involution T on Y such that T moves a point on Y if and only if it is in U. (A homeomorphism R is an involution if $R \circ R$ is the identity.) Moreover, taking $S_1 = Y - U$, i.e., the fixed point set of T, and $f(S_1) = Z$, then f factors as shown in the following diagram:

Received by the editors May 8, 1965.

\(^1\) The author gratefully acknowledges various helpful criticisms and suggestions made by the referee.
In addition:

(i) \(f = k \circ h \),

(ii) \(h \) is the map from \(Y \) to the decomposition or orbit space of \(T \),

(iii) \(h|S_1 \) is a homeomorphism,

(iv) \(k| (Y/T - h(S_1)) \) is a homeomorphism,

(v) \(k| h(S_1) \) is 2-1,

(vi) \(S_1 \) is the disjoint union of mod 2 homology manifolds.

Facts (i) through (v) follow from Civin's construction, and (vi) by P. A. Smith [4]. By specializing to the case that \(Y \) is a mod 2 homology sphere, it follows that \(S_1 \) is one of lower dimension. Repeated use of this fact along with the above factorization yields a sequence \(S_0, S_1, \cdots, S_n \) of mod 2 homology spheres along with involutions \(T_i \) on \(S_i \) with:

(vii) \(S_0 = Y \) and \(S_n = \emptyset \) and as above

\[
S_i \xrightarrow{k_i} S_i/T_i \xrightarrow{k_i} X
\]

(viii)

\[
S_{i+1} \rightarrow h_i(S_{i+1}) \rightarrow f(S_{i+1})
\]

An examination of the Civin construction shows that it is unique and gives only one decomposition for each 2-1.

One additional fact from Smith theory will be used. In the case \(Y \) is an homology \(n \)-sphere, then the orbit map \(h: Y \rightarrow Y/T \) induces a trivial map \(h_*: H_n(Y) \rightarrow H_n(Y/T) \).

Proof of the Theorem. The proof proceeds by induction on \(n \) the number of terms in the decomposition for \(f \). If \(n = 1 \), then \(f \) is the orbit map for a fixed point free involution on \(X \) and the theorem follows by Smith theory. Now suppose that the theorem is true for maps whose decomposition has \(N \) or less terms and further assume that \(n = N+1 \). Referring to the first diagram, \(f|S_1 \) is 2-1 and this map has a decomposition with \(N \) terms so that:

(ix) \(H_i(Z) = \mathbb{Z}_2 \) if \(0 \leq i \leq \phi(S_1) \) and 0 otherwise. Now \(H_i(X, Z) \approx H_i(S_0/T, S_1) \) by \(k_* \), (iv), and the continuity of Čech homology. Moreover, \(H_i(S_0/T, S_1) \) is \(\mathbb{Z}_2 \) if \(\phi(S_1) < i \leq \phi(S_0) \) and 0 otherwise, again by Smith theory [Remark 2, p. 163 of 4].

Calculation of \(H_q(X) \).

Case 1. \(q > \phi(S_1) + 1 \).
Using the exact sequence for the pair \((X, Z)\)

\[0 \cong H_q(Z) \to H_q(X) \to H_q(X, Z) \to H_{q-1}(Z) \cong 0. \]

The end terms are 0 by (vii), so \(H_q(X) \cong H_q(X, Y)\). As the latter is isomorphic to \(H_q(S_0/T, S_1)\), then \(H_q(X)\) is \(\mathbb{Z}_2\) if \(q < \phi(S_0)\) and 0 otherwise.

Case II. \(q = \phi(S_1) + 1\).

The homeomorphism induced on the exact sequence of the pairs \((Y/T, S_1)\) and \((X, Z)\) yield in part

\[
\begin{align*}
0 & \cong H_q(Z) \to H_q(X) \to H_q(X, Z) \to H_{q-1}(Z) \\
& \cong H_q(Y/T, S_1) \to H_q(S_1) \\
& \cong H_{q-1}(S_1).
\end{align*}
\]

Now \(H_q(Y/T, S_1)\) is \(\mathbb{Z}_2\), and \(g^*\) an isomorphism. Granting that \(g|_{S_1*}\) is trivial it follows that \(\beta\) is also. Thus as \(H_q(Z) \cong 0\), \(\alpha\) is an isomorphism and \(H_q(X) = \mathbb{Z}_2\). The triviality of \(g|_{S_1}\) comes directly from Smith theory if \(n = 2\) in which case \(g|_{S_1}\) is the decomposition map of an involution. On the other hand, if \(n > 2\) then as \(g|_{S_1}\) is 2-1 to \(Z\), \(g|_{S_1} = k_1 \circ h_1\) where \(h_1\) is a decomposition map of an involution on \(S_1\) and so \(k_1*\) is trivial. Thus \(g|_{S_1*}\) is trivial.

Case III. \(q = \phi(S_1)\).

Again referring to part of the sequence for the pair \((X, Y)\)

\[
0 \cong H_{q+1}(Z) \to H_{q+1}(X) \to H_{q+1}(X, Z) \to H_q(Z) \to H_q(X) \to H_q(Y/T, S_1) = 0.
\]

Both \(H_{q+1}(X)\) and \(H_{q+1}(X, Z)\) are \(\mathbb{Z}_2\), thus \(\partial\) has image 0 and \(H_q(X) \cong H_q(Z)\). But \(H_q(Z) \cong \mathbb{Z}_2\) by induction.

Case IV. \(q < \phi(S_1)\).

Finally:

\[
0 \cong H_{q+1}(X, Z) \to H_n(Z) \to H_n(X) \to H_n(X, Z) \cong 0.
\]

So \(H_q(X) \cong H_q(X)\), which is \(\mathbb{Z}_2\) by (ix).

Corollary. There is no 2-1 from \(S^i\) to \(S^j\) unless \(i = j = 1\).

Proof. If \(i > 1\) then \(H_i(S^j) = H_{i-1} - (S^j) = Z\) by the theorem which is a contradiction. In the case \(i = j = 1\) two 2-1 maps are well known.

Question. Which manifolds have the property that all images of 2-1 have the same mod 2 homology groups? An example of a manifold which does not possess this property is \(S^1 \times S^2\). Taking \(T_i\) to be a
fixed point free involution on \(S^i \) and the identity on the other component, it is easy to see that:

\[
H_1\left(\frac{S^1 \times S^2}{T_1}, Z_2\right) \neq H_1\left(\frac{S_1 \times S_2}{T_2}, Z_2\right).
\]

Bibliography

Rutgers, The State University

VON NEUMANN REGULARITY IN JORDAN ALGEBRAS

CHESTER E. TSAI

In a Jordan algebra \(J \) (not necessarily finite-dimensional), an element \(a \) is regular if there exists an element \(x \) in \(J \) such that \(xU_a = 2(a \cdot x) \cdot a - a^2 \cdot x = a \). The algebra is a regular algebra if every element in \(J \) is regular (see [1, p. 246]). If \(J = A^+ \), where \(A \) is an associative algebra, then \(a \) is regular in \(J \) if, and only if, it is von Neumann regular in the associative algebra \(A \); that is if there exists an element \(x \) in \(A \) such that \(a \cdot x \cdot a = a \). The purpose of this note is to carry out some analogous results for Jordan algebras (not necessarily special Jordan algebras). The characteristic of the ground field \(K \) is always assumed not to be two.

Throughout this paper, the following three identities will be used quite frequently.

\[
\begin{align*}
(x \cdot y) \cdot d & \cdot z + [(x \cdot z) \cdot d] \cdot y + [(y \cdot z) \cdot d] \cdot x = (x \cdot y) \cdot (d \cdot z) \\
& + (x \cdot z) \cdot (d \cdot y) + (y \cdot z) \cdot (d \cdot x) \quad \text{for all } x, y, z, d \text{ in } J.
\end{align*}
\]

(2) \(U_xU_y = U_yU_xU_y \) for all \(x, y \) in \(J \).

(3) \(U_xU_{a-x} = U_aU_xU_a + U_a - 2L(a \cdot x)U_a - 2L(a)L(x)U_a \\
+ 2L(x)L(a)U_a \quad \text{for all } a, x \text{ in } J.\)

Identity (1) is the linearized form of the Jordan identity \(x^2 \cdot (x \cdot y) = x \cdot (x^2 \cdot y) \). Identity (2), which is called the fundamental formula of Jordan algebras, was proved in several places, (see, for example, [2]).

Received by the editors July 11, 1966.