SOME LINEAR TOPOLOGICAL PROPERTIES OF
SEPARABLE FUNCTION ALGEBRAS

A. PEŁCZYŃSKI

1. Introduction. Let \(C(S) \) be the Banach algebra of all continuous
complex-valued functions on a compact Hausdorff space \(S \) with the
norm \(\|f\| = \sup_{s \in S} |f(s)| \).

By a function algebra we mean a closed subalgebra of \(C(S) \) which
contains constant functions and separates the points of \(S \).

In this paper we study some linear topological properties of separa-
ble (= \(S \) metrizable) function algebras. In other words, we are inter-
ested in the properties of a Banach space which is either linearly
homeomorphic or linearly isometric\(^3\) to a function algebra on a com-
pact metric space. If \(S \) is countable, then \(C(S) \) is the unique function
algebra on \(S \) [16]. Therefore for \(S \) metrizable the only interesting
case is when \(S \) is uncountable.

Our main result (Theorem 1) shows that in this case the function
algebras still possess several properties which are possessed by the
space \(C(S) \). In particular, if \(A \) is a function algebra on a compact
uncountable metric space \(S \), then every separable normed linear space
is isometric to a closed linear subspace of \(A \).

2. Notation. \(M(S) \), \(S \) compact Hausdorff will denote the usual
Banach space of all complex finite regular Borel measures on \(S \), the
dual of the space \(C(S) \). For \(\mu \) in \(M(S) \) we shall employ the notation
\(\mu(f) = \int_{S} f \, d\mu \). The dual space to a normed linear space \(X \) will be de-
noted by \(X^* \).

A function \(g \) in \(C(S) \) peaks on the subset \(T \subset S \) provided
\(g^{-1}(\|g\|) = T \) and \(|g(s)| < \|g\| \) for \(s \in S \setminus T \). If \(T = \{t\} \) is a one-point set,
we shall say that \(g \) peaks at \(t \). If \(A \) is a function algebra on a compact
metric space \(S \), then the set

\[B(A) = \{ s \in S : \text{there is some } g \in A \text{ such that } g \text{ peaks at } s \} \]
is called the Choquet boundary for A (Bishop [1], cf. also [15, p. 53]). The set $B(A)$ is an absolute $G_δ$, i.e., it is a $G_δ$ in a compact metric space S.

A (nonempty) subset S_0 of a topological space S is said to be a (proper) perfect set if S_0 is closed and if it is dense in itself, i.e., every point of S_0 is a limit point of S_0. Finally if T is a subset of a topological space S, then $\text{int } T$ denotes the interior of T; if S is metric, then $d(s', s'')$ denotes the distance between points s' and s'' in S.

3. “Peano curves” in function algebras. In this section we shall show that if S is uncountable, then in any function algebra on S there are functions whose range is the whole unit disc

$$K = \{ z : |z| \leq 1 \}$$

(like the Peano curve which maps the unit interval onto the unit square).

PROPOSITION 1. Let A be a function algebra on a compact metric space S and let S_0 be a proper perfect compact subset of $B(A)$. Then there is a function h in A such that $h(S) = K$ and $h(S \setminus S_0) \subset \text{int } K$.

PROOF. Since $S \setminus S_0$ is an F_σ, there is an increasing sequence of closed sets $F_1 \subset F_2 \subset \cdots$ such that $S \setminus S_0 = \bigcup_{n=1}^{\infty} F_n$. Let us set

$$K_n = \{ z \in K : |z| \leq 1 - 2^{-n} \} \quad \text{for } n = 1, 2, \cdots.$$ We shall define by induction a sequence (f_n) in A satisfying the following properties.

(1) $\|f_n\| < 1$,

(2) there is a finite set Z_n in S_0 such that $f_n(Z_n) \subset \text{int } K_n$ and $f_n(Z_n)$ is a 2^{-n} net for K_{n+1},

(3) $\|f_{n+1} - f_n\| < 2^{-n}$,

(4) if $s \in F_m$, then $|f_n(s)| < \frac{1}{2}(1 + \|f_{m+1}\|)$ (1 $\leq m \leq n$; $n = 1, 2, \cdots$).

Let us set $f_0 = 0$ and suppose that for $0 \leq j \leq n$ the functions f_j satisfying (1) – (4) have been defined. By (2) there are s_1, s_2, \cdots, s_N in S_0 such that the set $\bigcup_{k=1}^{N}\{w_k\}$ is a 2^{-n}-net for K_{n+1} where $w_k = f_n(s_k) \subset \text{int } K_n$ for $k = 1, 2, \cdots, N$. Let $Z = \bigcup_{j=1}^{M}\{z_j\}$ be a $3 \cdot 2^{-n-3}$-net for K_{n+2} such that $|z_j| < 1 - 9 \cdot 2^{-n-4}$. We enumerate elements of Z in such a way that

$$|w_k - z_j| < 2^{-n} \quad \text{for } M(k - 1) < j \leq M(k) \quad (k = 1, 2, \cdots, N)$$

where $0 = M(0) < M(1) < \cdots < M(N) = M$. Let

$$\sigma_1 = \max_{1 \leq k \leq N} \max_{M(k - 1) < j \leq M(k)} |w_k - z_j|; \quad \sigma_2 = \max_{1 \leq k \leq n} |w_k|,$$
(6) \(\epsilon = \min \left(2^{-n} - \sigma_1; 1 - 2^{-n} - \sigma_2; 1 - \|f_n\| \right) \).

Then \(2^{-n} > \epsilon > 0 \). Since \(f_n \) is uniformly continuous on \(S \) we can choose \(\delta > 0 \) such that for arbitrary \(s' \) and \(s'' \) in \(S \)

(7) if \(d(s', s'') < \delta \), then \(\left| f_n(s') - f_n(s'') \right| < \frac{1}{4} \epsilon \).

Since \(S_0 \) is a perfect set, there are \(t_j \) in \(S_0 \) such that \(d(s_k, t_j) < \frac{1}{2} \delta \) for \(M(k-1) < j \leq M(k) \); \(t_p \neq t_q \) for \(p \neq q \). Thus, since \(w_k = f_n(s_k) \), we get

(8) \(\left| f_n(t_j) - z_j \right| \leq \left| w_k - z_j \right| + \left| f_n(t_j) - f_n(s_k) \right| < 2^{-n} - \frac{3}{4} \epsilon \).

Let

\[\delta_1 = \frac{1}{3} \min \left(\delta, \min \frac{d(t_p, t_0)}{p \neq q} \right) . \]

Choose \(g_j \) in \(A \) for \(j = 1, 2, \cdots, M \) such that

(9) \(\|g_j\| = |g_j(t_j)|; g_j(t_j) = z_j - f_n(t_j), \)

(10) if \(d(s, t_j) > \delta_1 \), then \(|g_j(s)| < (16M)^{-1} \epsilon \),

(11) if \(s \in F_m \), then \(|g_j(s)| < M^{-1} \left[\frac{1}{2} (1 + \|f_m\|) - \|f_n(s)\| \right] \)

\((m = 1, 2, \cdots, n). \)

To construct \(g_j \), choose arbitrary \(h_j \) in \(A \) such that \(1 = h_j(t_j) > |h_j(s)| \)
for \(s \in S \setminus \{t_j\} \). Since \(t_j \in B(A) \), such \(h_j \) exists \((j = 1, 2, \cdots, M) \). Then put

\[g_j = [z_j - f_n(t_j)]^p \]

where the integer \(p(j) \) is chosen such that for \(j = 1, 2, \cdots, M \),

if \(d(s, t_j) > \delta_1 \), then \(|h_j(s)|^{p(j)} < (16M)^{-1} \epsilon \);

if \(s \in F_m \), then \(|h_j(s)|^{p(j)} < M^{-1} \inf_{s \in F_m} \left[\frac{1}{2} (1 + \|f_m\|) - \|f_n(s)\| \right] \)

\((m = 1, 2, \cdots, n). \)

Let us set

(12) \[g = \sum_{j=1}^{M} g_j; \quad f_{n+1} = f_n + g. \]

We shall estimate the norms of \(g \) and \(f_{n+1} \). Let \(s \in S \). Let us consider two cases:

1°. \(d(s, t_j) > \delta_1 \) for all \(j \). Then, by (6), (10) and (12),

\[\left| g(s) \right| \leq \sum_{j=1}^{M} |g_j(s)| < \frac{\epsilon}{16} < 2^{-n} , \]

and

\[\left| f_{n+1}(s) \right| \leq \left| f_n(s) \right| + \left| g(s) \right| \leq \|f_n\| + \epsilon/16 < 1. \]

2°. There is exactly the one index \(j(s) \) such that \(d(s, t_{j(s)}) \leq \delta_1 \). Then by (5), (6), (10) and (12)
\[|g(s)| \leq \|g_j(s)\| + \sum_{j \neq j(s)} |g_j(s)| \leq |z_j(s) - f_n(t_j(s))| + \frac{\epsilon}{16} \]
\[< 2^{-n} - \frac{\epsilon}{4}. \]

Let us choose \(k(s) \) such that \(M(k(s) - 1) < j(s) \leq M(k(s)) \). Then, since \(d(s_k(s), t_j(s)) \leq \epsilon \) and \(\delta_1 < \frac{\epsilon}{2} \), we get
\[d(s_k(s), s) \leq d(s_k(s), t_j(s)) + d(s, t_j(s)) < \epsilon. \]

Thus \(|f_n(s_k(s)) - f_n(s)| < \frac{\epsilon}{4} \). Then by (7), (8) and (9),
\[|f_{n+1}(s)| \leq |f_n(s)| + |g(s)| \leq |f_n(s_k(s))| + |f_n(s_k(s)) - f_n(s)| \]
\[+ |g(s)| < |w_k(s)| + 2^{-n}. \]

Thus since \(w_k(s) \subset \text{int} \ K_n \), \(|f_{n+1}(s)| < 1. \)

It follows from the choice of \(\delta_1 \) that, for every \(s \in S \), either 1° or 2° is satisfied. Thus
\[\|f_{n+1}\| < 1 \quad \text{and} \quad \|f_{n+1} - f_n\| = \|g\| < 2^{-n}. \]

Now we shall check that the set \(\cup_{j=1}^M \{f_{n+1}(t_j)\} \subset \text{int} \ K_{n+1} \) is a \(2^{-n-1} \)-net for \(K_{n+2} \). It follows from (9) that
\[f_{n+1}(t_j) = (f_n(t_j) + g_j(t_j)) + \sum_{p \neq j} g_p(t_j) = z_j + \sum_{p \neq j} g_p(t_j). \]

Hence
\[|f_{n+1}(t_j) - z_j| < 2^{-n-4} \quad (j = 1, 2, \cdots, M) \]
because by (10), \(\sum_{p \neq j} |g_p(t_j)| < 2^{-4} \epsilon < 2^{-n-4}. \)

Since \(|z_j| < 1 - 9 \cdot 2^{-n-4} \) for \(j = 1, 2, \cdots, M \) and since \(\cup_{j=1}^M \{z_j\} \) is a \(3 \cdot 2^{-n-3} \)-net for \(K_{n+2} \), the inequality (13) implies that \(|f_{n+1}(t_j)| < 1 - 2^{-n-1} \) for \(j = 1, 2, \cdots, M \) and \(\cup_{j=1}^M \{f_{n+1}(t_j)\} \) is a \(2^{-n-1} \)-net for \(K_{n+2} \).

Finally if \(s \in F_m \) \((m = 1, 2, \cdots, n)\), then by (11) \(\sum_{j=1}^M |g_j(s)| < \frac{1}{2} (1 + \|f_m\| - |f_m|). \) Therefore \(|f_{n+1}(s)| < \frac{1}{2} (1 + \|f_m\|). \) Clearly if \(s \in F_{n+1} \) then \(|f_{n+1}(s)| \leq \|f_{n+1}\| < \frac{1}{2} (1 + \|f_{n+1}\|), \) because we have already checked that \(\|f_{n+1}\| < 1. \) This completes the induction.

To complete the proof we define
\[h = \lim_{n \to \infty} f_n. \]

It follows immediately from (1)–(4) that \(h \) has the desired properties.

Corollary 1. Let \(A \) be a function algebra on \(S \), \(S \) compact and
metric. Let S_0 be a proper perfect compact subset of $B(A)$. Then there is a function g in A which peaks on some uncountable subset of S_0.

Proof. Let Δ be a closed uncountable subset of the unit circle of (1-dimensional) Lebesgue measure zero. Let ϕ be a continuous function on K analytic at each point of int K and such that $\phi^{-1}(1) = \Delta$ and $\phi^{-1}(K \setminus \Delta) \subset \text{int } K$ (cf. [9, p. 81]). Let $g = \phi \circ h$, where $h \in A$ is chosen as in Proposition 1. Since ϕ is a uniform limit (in K) of a sequence of polynomials, say (W_n), the function g is the uniform limit of the sequence $(W_n \circ h)$. Hence g belongs to A.

Clearly g peaks on the set $h^{-1}(\Delta) \subset S_0$.

4. The main result.

Theorem 1. Let A be a function algebra on a compact metric space S. Then the following conditions are equivalent.

(a) S is uncountable.
(b) A^* is nonseparable.
(c) $B(A)$ is uncountable.
(d) There exists a subset T of S homeomorphic to the Cantor discontinuum and a linear operator $u : C(T) \to A$ such that for every $f \in C(T)$, $\|uf\| = \|f\|$ and $(uf)(s) = f(s)$ for $s \in T$.
(e) A contains a closed linear subspace which is isometrically isomorphic to the space of all continuous functions on the Cantor discontinuum and which is the range of a projection of norm one from A.
(f) Every separable normed linear space is linearly isometric to a linear subspace of A.

Proof. (a)\Rightarrow (b). If S is uncountable, then $M(S) = [C(S)]^*$ is nonseparable (because if $s' \neq s''$, then $\|\eta_{s'} - \eta_{s''}\| = 2$ for arbitrary s' and s'' in S). Therefore we can restrict our attention to the case where $A \neq C(S)$. In this case there is a maximal antisymmetric set, say S_1, for A which contains more than one point (cf. [2], [6]). Let r be the operator which assigns to each f in A its restriction to S_1 and let $rA = A_1$. By results of Bishop [2] (cf. also [6]) and Šilov [17], A_1 is an antisymmetric function algebra on S_1. Since r maps A onto A_1, the adjoint map r^* is a linear homeomorphism from A_1^* into A^* [5, p. 488]. Therefore it is enough to show that A_1^* is nonseparable. To prove this observe first that $B(A_1)$ has no isolated points. Otherwise, A_1 would contain a nonconstant idempotent which contradicts the antisymmetry of A_1. (Indeed, let X be a function algebra on T and let t_0 be an isolated point of $B(X)$. Then [15, p. 53] there is an f in X such that $\|f\| = f(t_0) = 1$ and $|f(t)| \leq \frac{3}{2}$ for $t \neq t_0$. Clearly $\|f^p - f^q\| \leq (\frac{3}{2})^p + (\frac{3}{2})^q$ for $p, q = 1, 2, \ldots$. Hence (f^n) is a Cauchy sequence. Let $e = \lim_n f^n$; then
Thus $B(A_1)$ is uncountable, because it has no isolated points and it is a $G_δ$ in a compact metric space (cf. [8, p. 137, X]).

Let us set

$$x_s^* = f(s) \quad \text{for } f \in A_1 \text{ and } s \in B(A_1).$$

Then $x_s^* \in A_1^*$ and $\|x_s^*\| \leq 1$ for $s \in B(A_1)$, and $\|x_s^* - x_t^*\| = 2$ for $s_1 \neq s_2$. Indeed, if f_i peaks at s_i ($i = 1, 2$), then

$$\lim_{n} \|f_1^n - f_2^n\| = 1 \quad \text{and} \quad 2 \geq \|x_{s_1}^* - x_{s_2}^*\| \geq \lim_{n} (x_{s_1}^* - x_{s_2}^*)(f_1^n - f_2^n) = 2.$$

Thus A^* is nonseparable.

non (c) \implies non (b). Let us set

$$M(B(A)) = \left\{ \mu \in M(S) : \mu(f) = \int_{B(A)} f d\mu \right\}.$$

Since (by non (c)) $B(A)$ is countable, $M(B(A))$ is isometrically isomorphic to the space l_1 of all absolutely convergent series. Hence $M(B(A))$ is separable. For $\mu \in M(B(A))$, let μ_A denote the restriction of the linear functional μ to A. Then, by the Bishop-Choquet-de Leeuw set up theorem (cf. [15, p. 38 and p. 53]) the correspondence $\mu \rightarrow \mu_A$ is a linear map from $M(B(A))$ onto A^*. Hence, A^* is separable as a continuous image of a separable Banach space.

(c) \implies (d). According to a result of Bishop [3] and the Main Theorem of [12] it is enough to show

(d') there is an uncountable compact subset T of S such that if $\mu \in A^+ = \{ \nu \in M(S) : \nu(f) = 0 \text{ for } f \in A \}$, then $\mu(E) = 0$ for arbitrary Borel set $E \subset T$.

Since $B(A)$ is an uncountable absolute $G_δ$, it contains a proper compact perfect subset S_0 (cf. [8, p. 138, XI]). Choose (using Corollary 1) $g = g_{0,0}$ in A such that $\|g_{0,0}\| = 1$ and g peaks on an uncountable subset of S_0. Let us set $S_{0,0} = g_{0,0}^{-1}(1)$. Since $S_{0,0}$ is uncountable we can find disjoint perfect subsets of $S_{0,0}$, say $S_{1,0}$ and $S_{1,1}$ such that $\text{diam } S_{i,0} < \frac{1}{2}$ for $i = 0, 1$. Thus, applying Corollary 1, we can find functions $g_{1,0}$ and $g_{1,1}$ in A which have norm one and which peak on some uncountable subsets of $S_{1,0}$ and $S_{1,1}$ respectively. We put $S_{1,0} = g_{1,0}^{-1}(1)$ for $i = 0, 1$. Continuing in this manner we define inductively for $j = 0, 1, \ldots , 2^n - 1$ and for $n = 0, 1, \ldots$ uncountable closed subsets $S_{n,j}$ of $C(A)$ and functions $g_{n,j}$ in A with the following properties:

(i) $\|g_{n,j}\| = 1$ and $g_{n,j}$ peaks on $S_{n,j}$.

4 If T is a subset of a metric space S, then $\text{diam } T = \sup_{s, t \in T} d(s, t)$.
(ii) \(S_{n,j} \cap S_{n,k} = \emptyset \) for \(k \neq j \),
(iii) \(S_{n+1,2j} \cup S_{n+1,2j+1} \subseteq S_{n,j} \),
(iv) \(\text{diam } S_{n,j} \leq (n+1)^{-1} \) for \(n > 0 \).

Let us set
\[
T = \bigcap_{n=0}^{\infty} \bigcup_{j=0}^{2^n-1} S_{n,j}.
\]

Clearly \(T \) is homeomorphic to the Cantor discontinuum (as a proper zero-dimensional perfect compact set [10, Vol. II, p. 58]). We shall show that \(T \) satisfies the condition \((d') \). To do this it is enough to show that if \(\mu \in A^{\perp} \), then \(\mu(T \cap S_{m,k}) = 0 \) for \(k = 0, 1, \ldots, 2^{m-1} \) and for \(m = 0, 1, \ldots \), because the sets \(S_{m,k} \) generate the field of all Borel subsets of \(T \).

For a fixed pair \((m, k) \) with \(0 \leq k \leq 2^m \) and \(m = 0, 1, \ldots \), let us set
\[
N_p = \{ j = 2^p - 1 : S_{p,j} \subseteq S_{m,k} \} \quad (p = m, m + 1, \ldots).
\]
Then
\[
T \cap S_{m,k} = \bigcap_{n \geq m} \bigcup_{j \in N_p} S_{p,j}.
\]

Let \(\varepsilon > 0 \). Since \(\mu \) is a finite regular Borel measure, there is an index \(p \geq m \) such that
\[
\mu \left(\bigcup_{j \in N_p} S_{p,j} \setminus T \cap S_{m,k} \right) < \varepsilon.
\]

Let us set
\[
f_n = \sum_{j \in N_p} g_{p,j}^n \quad (n = 1, 2, \ldots).
\]
Clearly, by (i), \(\|f_n\| \leq \sum_{j=0}^{2^n-1} \|g_{p,j}^n\| = 2^p - 1 \) for \(n = 1, 2, \ldots \) and \(g_{p,j}^n \) converges pointwise to the characteristic function of \(S_{p,j} \) \((j = 0, 1, \ldots, 2^p - 1) \). Hence, by (ii), the sequence \(f_n \) converges to the characteristic function of the set \(\bigcup_{j \in N_p} S_{p,j} \). Therefore, since \(\mu \in A^{\perp} \), the Lebesgue dominated convergence theorem implies
\[
0 = \lim_n \mu(f_n) = \lim_n \int_S f_n(t) \mu(dt) = \int_S \lim_n f_n(t) \mu(dt) = \mu \left(\bigcup_{j \in N_p} S_{p,j} \right).
\]
Thus \(|\mu(T \cap S_{m,k})| < \varepsilon \), because of the choice of the index \(p \). Since \(\varepsilon \) is an arbitrary positive number, \(\mu(T \cap S_{m,k}) = 0 \).

(d) \(\rightarrow \) (e). This follows from [12, Proposition 1].

(e) \(\rightarrow \) (f). This follows from the fact that every separable normed
linear space is linearly isometric to a linear subspace of the space of all continuous functions on the Cantor discontinuum [4, p. 93 (6)].

non (a) → non (f). If \(S \) is countable, then \(M(S) \) is linearly isometric to \(l_1 \), in particular \(M(S) \) is separable [16], [17]. Thus every linear subspace \(X \) of \(C(S) \), in particular every subspace of \(A \), has a separable dual, because \(X^* \) is a continuous image (by the restriction map) of \(M(S) \).

Corollary 2. Let \(A \) be a function algebra on a compact metric space \(S \) and suppose that there exists a (bounded) projection from \(C(S) \) onto \(A \). Then \(A \) is linearly homeomorphic to \(C(S) \).

Proof. If \(S \) is countable, then by a result of Rudin [16], \(A = C(S) \). If \(S \) is uncountable, then by a result of Miljutin (cf. [11], [13, Theorem 8.5]) \(C(S) \) is linearly homeomorphic to \(C(\mathcal{C}) \), where \(\mathcal{C} \) denotes the Cantor discontinuum. Thus by the assumption of the corollary, \(A \) is linearly homeomorphic to a complemented subspace of \(C(\mathcal{C}) \). On the other hand, by Theorem 1 (condition (e)) \(A \) contains a complemented subspace which is linearly isometric to \(C(\mathcal{C}) \). Thus, by [13, Proposition 8.3], \(A \) is linearly homeomorphic to \(C(\mathcal{C}) \) or equivalently to \(C(S) \).

Let us note that Corollary 2 is related to the conjecture of Glicksberg [7], that if \(A \) is a closed complemented subalgebra of \(C(S) \), \(S \) compact Hausdorff, then \(A \) is selfadjoint. Indeed if this conjecture is true, then the Stone-Weierstrass theorem will imply that a complemented function algebra on a compact Hausdorff space \(S \) is the whole space \(C(S) \).

References

* A linear subspace \(Y \) of a Banach space \(X \) is said to be complemented in \(X \) if there is a (bounded linear) projection from \(X \) onto \(Y \).

University of Warsaw and

University of Washington