Purely indecomposable torsion-free groups
HTML articles powered by AMS MathViewer
- by Phillip Griffith
- Proc. Amer. Math. Soc. 18 (1967), 738-742
- DOI: https://doi.org/10.1090/S0002-9939-1967-0215917-1
- PDF | Request permission
References
- J. W. Armstrong, On the indecomposability of torsion-free abelian groups, Proc. Amer. Math. Soc. 16 (1965), 323–325. MR 173706, DOI 10.1090/S0002-9939-1965-0173706-9 —, “On $p$-pure subgroups of the $p$-adic integers,” in Topics in Abelian groups, Scott, Foresman and Co., Chicago, Ill., 1963; pp. 315-321.
- R. A. Beaumont and R. S. Pierce, Torsion free groups of rank two, Mem. Amer. Math. Soc. 38 (1961), 41. MR 130297
- L. Fuchs, Abelian groups, Publishing House of the Hungarian Academy of Sciences, Budapest, 1958. MR 0106942 —, “Recent results and problems in Abelian groups,” in Topics in Abelian groups, Scott, Foresman and Co., Chicago, Ill., 1963; pp. 12-13.
- L. Fuchs, Notes on abelian groups. II, Acta Math. Acad. Sci. Hungar. 11 (1960), 117–125 (English, with Russian summary). MR 125878, DOI 10.1007/BF02020629
- D. K. Harrison, Infinite abelian groups and homological methods, Ann. of Math. (2) 69 (1959), 366–391. MR 104728, DOI 10.2307/1970188
- Elliot Carl Weinberg, Free lattice-ordered abelian groups, Math. Ann. 151 (1963), 187–199. MR 153759, DOI 10.1007/BF01398232
Bibliographic Information
- © Copyright 1967 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 18 (1967), 738-742
- MSC: Primary 20.30
- DOI: https://doi.org/10.1090/S0002-9939-1967-0215917-1
- MathSciNet review: 0215917