1. Introduction. Ehrenfeucht and Feferman have shown [1] that all recursively enumerable sets \(X \) of natural numbers are "representable" in any consistent recursively enumerable theory \(S \) in which all recursive functions are definable (in the sense of Tarski-Mostowski-Robinson [4]) and which has a formula \(x_1 \leq x_2 \) satisfying conditions (i), (ii) below for each natural number \(n \):

(i) \(\vdash_S x_1 \leq n \equiv x_1 = 0 \lor x_1 = 1 \lor \ldots \lor x_1 = n \),

(ii) \(\vdash_S x_1 \leq n \lor \bar{n} \equiv x_1 = n \).

(Here \(\bar{n} \) is the (closed) numerical term of \(S \) corresponding to \(n \), i.e. \(\Delta_n \) of [4, p. 44].) (By a construction of Cobham (see [3, p. 121] for details), (ii) is redundant in the presence of (i) and the definability in \(S \) of the successor function.) That is, for such an \(X \), there is a formula \(\Phi(x_1) \) of \(S \) (with exactly one free variable \(x_1 \)) such that for every \(n \),

\[
\neg \Phi(n) \iff n \in X.
\]

The argument is to show that there is some creative set \(C \) representable in \(S \), from which the result follows by the reducibility of \(X \) to \(C \) by some recursive function (Myhill). Shepherdson has obtained the result [3] more directly by an elegant adaptation of Rosser-type arguments, much as Bernays obtained results of Myhill on theories. In [2] Ritchie and Young show that in every consistent recursively enumerable extension \(S \) of R. M. Robinson's system \(R \) ([4, pp. 52–53]), all partial recursive functions \(\phi \) are "strongly representable." That is, for such a \(\phi \), there is a formula \(\Phi(x_1, x_2) \) of \(S \) such that for all \(m, n \),

(iii) \(\phi(m) = n \iff \vdash_S \Phi(m, n) \);

and further,

(iv) \(\vdash_S (E_{x_2} \Phi(x_1, x_2)) \).

This result not only yields that of Ehrenfeucht and Feferman as an immediate corollary but also gives a neat characterization of the class of partial recursive functions, in addition to showing that the condition (iii) of [4, p. 45] for definability of a total function by a formula \(\Phi \) (viz. for each \(n \))

\[
\vdash_S \Phi(n, x_2) \land \Phi(n, x_3) \supset x_2 = x_3
\]

implies the stronger condition obtained by replacing \(n \) by a variable.

Presented to the Society, January 1, 1966; received by the editors June 29, 1966.
The argument uses a theorem on exact separation of disjoint recursively enumerable sets due to Putnam and Smullyan; it is interesting to note that Shepherdson [3] obtains this separation result with his direct methods.

The present note gives a direct proof of a slight generalization of the theorem of Ritchie and Young alluded to above. Namely, let \(S \) be any consistent recursively enumerable theory in which every recursive relation is definable (in the sense of Tarski-Mostowski-Robinson [4, p. 44]) and which has a formula \(x_1 \leq x_2 \) satisfying (i) above as well as (ii)' below:

\[(ii)\' \quad \vdash_S x_1 \leq x_2 \lor x_2 \leq x_1.\]

Alternatively, we may assume that \(S \) satisfies just (i) and that every recursive function is definable in \(S \) (cf. [3, p. 121]). In either case we have the following.

Theorem. Every partial recursive function is strongly representable in \(S \).

That is, if \(\phi \) is a partial recursive function then there is a formula \(\Phi(x_1, x_2) \) of \(S \) such that for all \(m, n \), (iii) above holds as well as (iv).

2. Weak representability. We say that the partial function \(\phi \) is weakly represented in \(S \) by \(\Phi(x_1, x_2) \) provided that (iii) above holds as well as

\[(iva) \quad \vdash_S \Phi(x_1, x_2) \land \Phi(x_1, x_3) \supseteq x_2 = x_3.\]

Theorem 1. Every partial recursive function \(\phi \) is weakly representable in \(S \).

In what follows let \(\phi \) be a fixed partial recursive function. Then according to the Enumeration Theorem of Kleene there is a recursive predicate \(T(u, w) \) and a recursive function \(U \) such that

\[\phi(u) = v \iff (\exists w)[T(u, w) \land U(w) = v].\]

(We may take \(T(u, w) \) as the \(T_1(e, u, w) \) of [IM, p. 330], and the \(U \) found there, where \(e \) is any index for \(\phi \).) We may assume that in particular \(T \) has the property that \(T(u, w_1) \land T(u, w_2) \Rightarrow w_1 = w_2 \). Let the recursive relations \(T(u, w) \) and \(U(w) = v \) be defined in \(S \) by \(\exists(x_1, x_2) \) and \(\forall(x_3, x_2) \), respectively, and let \(\exists(x, y, z) \) be the conjunction of the two formulas

\[\exists(x, z) \land (s_1)[s_1 \leq z \supset [\exists(x, s_1) \supset z_1 = z]]\]

and

\[\forall(z, y) \land (y_1)[y_1 \leq y \supset [\forall(z, y_1) \supset y_1 = y]].\]
Lemma 1. For any $u, v, w,$

$$T(u, w) \& U(w) = v \iff \vdash_S \mathcal{D}(\bar{u}, \bar{v}, \bar{w}).$$

Proof. It suffices to show the implication to the right, so suppose that $T(u, w)$ and $U(w) = v.$ We have then $\vdash_S \exists \bar{u}(\bar{u}, \bar{w}) \& \forall \bar{w}(\bar{v})$ by the choice of \exists and $\forall.$ But also for every $n \leq w$ we have

$$\vdash_S [\exists(\bar{u}, \bar{v}) \supset \bar{u} = \bar{w}]$$

(since the propositional components of this, for each fixed $n,$ can be proved or disproved appropriately), so by (i) we have

$$\vdash_S (z_1) [z_1 \leq \bar{w} \supset [\exists(\bar{u}, \bar{v}) \supset z_1 = \bar{w}]].$$

In the same way we have

$$\vdash_S (y_1) [y_1 \leq \bar{v} \supset [\exists(\bar{w}, \bar{v}) \supset y_1 = \bar{v}]]$$

and thus $\vdash_S \mathcal{D}(\bar{u}, \bar{v}, \bar{w}).$

Lemma 2. $\vdash_S \mathcal{D}(x, y_2, z_2) \& \mathcal{D}(x, y_3, z_3) \supset y_2 = y_3.$

Proof. From (ii)' we have $\vdash_S z_2 \leq z_3 \lor z_3 \leq z_2.$ Thus by specializing the variable z_1 in $\mathcal{D}(x, y_2, z_2)$ to $z_3,$ and in $\mathcal{D}(x, y_3, z_3)$ to $z_2,$ we obtain $\vdash_S \mathcal{D}(x, y_2, z_2) \& \mathcal{D}(x, y_3, z_3) \supset z_2 = z_3.$ From this equality and by a similar manipulation of the final clauses of $\mathcal{D}(x, y_2, z_2)$ and $\mathcal{D}(x, y_3, z_3)$ we obtain the desired result.

Proof of Theorem 1. Let Q, P be recursive predicates defined as follows:

$Q(u, v, w, q) \iff q$ is (the Gödel number of) a proof (in \mathcal{S}) of $\mathcal{D}(\bar{u}, \bar{v}, \bar{w})$

$P(u, v, r, p) \iff p$ is (the Gödel number of) a proof (in \mathcal{S}) of $A^3_r(\bar{u}, \bar{v}, \bar{r})$

where $A^3_r(x_1, x_2, x_3)$ is the formula of \mathcal{S} whose Gödel number is r and which contains no variables free other than $x_1, x_2, x_3.$ Then P, Q are represented in \mathcal{S} by some $\mathcal{P}, \mathcal{Q},$ respectively. Let r_0 be the Gödel number of the formula

$$(Ez) \mathcal{D}(x_1, x_2, z) \& (x_4) \mathcal{[\mathcal{P}(x_1, x_2, x_3, x_4) \supset (Ex_6)[x_6 \leq x_4 \& (Ex_6)[x_6 \leq x_5 \& Q(x_1, x_2, x_6, x_6)]].$$

We claim that ϕ is weakly represented by $\phi,$ where $\Phi(x_1, x_2)$ is the formula $A^3(\bar{x}_1, \bar{x}_2, \bar{r}_0).$

Now suppose that $\vdash_S \Phi(\bar{u}, \bar{v})$ for some $u, v.$ Let p be (the number of) a proof; then $\vdash_s \Phi(\bar{u}, \bar{v}, \bar{r}_0, \bar{p})$ according to the definition of P by Φ and our supposition. Hence by specialization of x_4 to \bar{p} in the definition of Φ we have (upon application of modus ponens) that
Hence (by a similar argument to the one above in connection with \(\mathcal{D} \)), \(Q(u, v, w, q) \) for some \(w, q \) with \(w \leq q \leq p \), since \(Q \) is defined by \(\mathcal{Q} \). Hence (by the meaning of \(Q \)) there is a proof (in fact, with number \(q \)) of \(\mathcal{D}(\bar{u}, \bar{v}, \bar{w}) \). We conclude both \(T(u, w) \) and \(U(w) = v \), and then that \(\phi(u) = v \).

Conversely, let \(\phi(u) = v \); take \(w \) minimal so that \(T(u, w) \) and \(U(w) = v \). Then for some minimal \(q \geq w \), \(q \) is a proof of \(\mathcal{D}(\bar{u}, \bar{v}, \bar{w}) \) by Lemma 1. Note in passing that \(-s(Ez)\mathcal{D}(u, v, z)\) (by extension of the proof \(q \)). Now for \(p < q \), we have \(-s(\mathcal{D}(u, v, f_0, f))\), since otherwise entails (as above) the existence of \(w_1, q_1, p_1 \) with \(w_1 \leq q_1 \leq p_1 < q \) where \(q_1 \) is a proof of \(\mathcal{D}(\bar{u}, \bar{v}, \bar{w_1}) \); but then \(T(u, w_1) \) implies \(w_1 = w \), so \(q \leq q_1 \) (contradicting the choice of \(q \)). Hence we can show by (i) and (ii) (or (ii)') that \(-s(\mathcal{D}(u, v, f_0, x_4) \supset q \leq x_4)\). But then

\[
-s(\mathcal{D}(u, v, r_0, x_4) \supset q \leq x_4 \land \bar{w} \leq \bar{q} \land \mathcal{Q}(\bar{u}, \bar{v}, \bar{w}, \bar{q})],
\]

so we conclude (by existential quantifications), with the help of the previously noted fact that \(-s(Ez)\mathcal{D}(u, v, z)\), that \(-s\phi(\bar{u}, \bar{v})\).

All that remains to be shown is (iva), but this follows immediately from Lemma 2.

3. Strong representability. Now we show how to construct another Rosser-type argument to obtain the strong representability of \(\phi \). To this end recall the definition of \(A^{(3)}_r(x_1, x_2, x_3) \) given above. Define recursive \(M, N \) as follows:

\[
M(u, v, r, p) \iff p \text{ is (the number of) a proof (in } S \text{) of } \sim \phi(\bar{u}, \bar{v}) \supset A^{(3)}_r(\bar{u}, \bar{v}, \bar{r}),
\]

\[
N(u, v, r, q) \iff q \text{ is a proof of } \sim \phi(\bar{u}, \bar{v}) \supset A^{(3)}_r(\bar{u}, \bar{v}, \bar{r}).
\]

Let \(M, N \) be defined in \(S \) by \(\mathfrak{M}, \mathfrak{P} \), respectively, and let \(r_0 \) be the Gödel number of the formula

\[
(x_4)[\mathfrak{M}(x_1, x_2, x_3, x_4) \supset (Ex_6)[x_3 \leq x_2 \land \mathfrak{P}(x_1, x_2, x_3, x_6)]].
\]

Take \(R_0 \) as \(A^{(3)}_r(x_1, x_2, r_0) \) and \(\Phi^*(x_1, x_2) \) as the formula

\[
\Phi(x_1, x_2) \lor [(z) \sim \Phi(x_1, z) \land [(x_2 = \bar{0} \land R_0(x_1, x_2)) \lor (x_2 = \bar{1} \land \sim R_0(x_1, x_2))].
\]

Theorem 2. \(\Phi^* \) strongly represents \(\phi \) in \(S \).

Proof. By Theorem 1 we infer that if \(\phi(u) = v \), then \(-s\phi(\bar{u}, \bar{v})\), so also \(-s\Phi^*(x, y) \land \Phi^*(x, z) \supset y = z \). It is straightforward to verify that \(-s(Ex)\Phi^*(x, y)\), merely using the logical form of \(\Phi^* \), so it remains to be shown that if

\(\Phi^*(\bar{u}, \bar{v}) \) is provable in \(S \) for some \(u, v \), then in fact \(\phi(u) = v \). Thus suppose that \(\vdash_S \Phi^*(\bar{u}, \bar{v}) \); it suffices to show that \(\vdash_S \Phi(\bar{u}, \bar{v}) \) also. First note that if \(v > 1 \), then \(\vdash_S \bar{v} \neq \bar{0} \land \bar{v} \neq \bar{1} \) by our assumptions about \(S \). But for such \(v \) it easily follows from the form of \(\Phi^*(\bar{u}, \bar{v}) \) that \(\vdash_S \Phi(\bar{u}, \bar{v}) \). Hence we need consider only the cases \(v = 0 \) and \(v = 1 \).

Case \(v = 0 \). In this case we see that \(\vdash_S \sim \Phi(\bar{u}, \bar{0}) \supset R_0(\bar{u}, \bar{0}) \); let \(\bar{p} \) be the number of a proof. Note that \(M(u, 0, r_0, \bar{p}) \) holds then, so that \(\vdash_S \exists \alpha(\bar{u}, \bar{0}, r_0, \bar{p}) \) since \(\exists \alpha \) defines \(M \). Now extend the proof \(\bar{p} \) by specializing the \(x_4 \) in the definition of \(R_0 \) to \(\bar{p} \), to obtain

\[
\vdash_S \sim \Phi(\bar{u}, \bar{0}) \supset (Ex_{\bar{5}})[x_5 \leq \bar{p} \land \alpha(\bar{u}, \bar{0}, r_0, x_5)].
\]

Now two possibilities arise. First, that \(\vdash_S \sim \Phi(\bar{u}, \bar{0}) \supset \sim R_0(\bar{u}, \bar{0}) \). In this subcase, clearly \(\vdash_S \Phi(\bar{u}, \bar{0}) \) as desired. **Otherwise**, it is not the case that \(\vdash_S \sim \Phi(\bar{u}, \bar{0}) \supset \sim R_0(\bar{u}, \bar{0}) \), so \(\neg N(u, 0, r_0, q) \) is false for all \(q \), and in particular for \(q \leq \bar{p} \). Hence for such \(q \), we have \(\vdash_S \sim \exists \alpha(\bar{u}, \bar{0}, r_0, \bar{q}) \), since \(\exists \alpha \) defines \(N \), and thus \(\vdash_S (x_{\bar{5}})[x_5 \leq \bar{p} \supset \exists \alpha(\bar{u}, \bar{0}, r_0, x_{\bar{5}})] \). From this and (0*) we conclude that \(\vdash_S \Phi(\bar{u}, \bar{0}) \).

Case \(v = 1 \). Now we see that \(\vdash_S \sim \Phi(\bar{u}, \bar{1}) \supset \sim R_0(\bar{u}, \bar{1}) \); if \(q \) is the number of a proof, \(N(u, 1, r_0, q) \) holds, so \(\vdash_S \exists \alpha(\bar{u}, \bar{1}, r_0, \bar{q}) \). Again it is possible that \(\vdash_S \sim \Phi(\bar{u}, \bar{1}) \supset R_0(\bar{u}, \bar{1}) \); and, if so, then \(\vdash_S \Phi(\bar{u}, \bar{1}) \) as desired. **Otherwise**, there is no proof in \(S \) of \(\sim \Phi(\bar{u}, \bar{1}) \supset R_0(\bar{u}, \bar{1}) \), and so \(M(u, 1, r_0, \bar{p}) \) fails for all \(\bar{p} \). In particular, for \(\bar{p} \leq q \) we have \(\vdash_S \exists \alpha(\bar{u}, \bar{1}, r_0, \bar{p}) \), and so (by (i)) \(\vdash_S \exists \alpha(\bar{u}, \bar{1}, r_0, x_{\bar{4}}) \supset (x_{\bar{4}} \leq \bar{q}) \).

Now from a proof of \(\alpha(\bar{u}, \bar{1}, r_0, \bar{q}) \) we can construct one of \(\bar{q} \leq x_{\bar{4}} \supset \bar{q} \leq x_{\bar{4}} \supset \alpha(\bar{u}, \bar{1}, r_0, \bar{q}) \), so \(\vdash_S \exists \bar{q} \supset (Ex_{\bar{5}})[x_5 \leq x_{\bar{4}} \land \exists \alpha(\bar{u}, \bar{1}, \bar{r}_0, x_{\bar{5}})] \). By (ii) we have \(\vdash_S x_{\bar{4}} \leq \bar{q} \land \bar{q} \leq x_{\bar{4}} \); so by combining this with the above results,

\[
\vdash_S \exists \alpha(\bar{u}, \bar{1}, r_0, x_{\bar{4}}) \supset (Ex_{\bar{5}})[x_5 \leq x_{\bar{4}} \land \alpha(\bar{u}, \bar{1}, r_0, x_{\bar{5}})].
\]

Generalize on \(x_4 \) in (1*) to obtain \(\vdash_S R_0(\bar{u}, \bar{1}) \), and conclude finally that \(\vdash_S \Phi(\bar{u}, \bar{1}) \) in this case also.

Bibliography

University of Washington