ON THE VANISHING OF $H^n(X, \mathcal{F})$ FOR AN n-DIMENSIONAL VARIETY

STEVEN L. KLEIMAN

Let X be an irreducible algebraic variety of dimension n. Then the cohomology group $H^n(X, \mathcal{F}) = 0$ for all coherent sheaves F if and only if X is nonproper [not complete]. This fact was conjectured by S. Lichtenbaum and proved by A. Grothendieck, in the more general form of the theorem stated below, by means of a delicate argument, which requires an examination both of the residue map and of the relation between local and global duality, [1]. This note gives a more elementary proof of this theorem.

To prove the sufficiency, we reduce to the case X is normal. Here we construct an open affine subset U of X whose complement Y is again irreducible and nonproper, and we consider the canonical exact sequence

$$0 \to \mathcal{F} \to i_* i^* \mathcal{F} \to \text{Coker } \psi \to 0$$

where $i: U \to X$ is the inclusion map. As $H^q(X, i_* i^* \mathcal{F}) = 0$ for $q > 0$, to be able to finish by induction on $n = \dim X$, in Remark 1 we strengthen the theorem to the form in which X is a closed subscheme of Z and F is a quasi-coherent \mathcal{O}_Z-module. We start the induction with $n = 1$, here X is an affine curve. However if we start the induction with $n = 0$, the proof yields $H^q(X, \mathcal{F}) = 0$ for $q > n$, X proper or not.

To prove the necessity, we first reduce to the case X is projective by taking a Chow cover of X and applying the Leray spectral sequence. Then we prove $H^n(X, \mathcal{O}_X(-m)) \neq 0$ for all $m \gg 0$ by induction on n.

Theorem. Let X be an n-dimensional algebraic scheme over the field k. Then for any coherent \mathcal{O}_X-module \mathcal{F}, $H^n(X, \mathcal{F})$ is a finite dimensional vector space over k. Furthermore, the following conditions are equivalent:

(i) All irreducible components of X of dimension n are nonproper.

(ii) $H^n(X, \mathcal{F}) = 0$ for all coherent \mathcal{O}_X-modules \mathcal{F}. Moreover, if X is quasi-projective and $\mathcal{O}_X(1)$ is a very ample \mathcal{O}_X-module, then (i) and (ii) are also equivalent to

(iii) $H^n(X, \mathcal{O}_X(-m)) = 0$ for all $m \gg 0$.

Received by the editors August 14, 1966.

1 This research was in part supported by the National Science Foundation under Grant NSF GP-5177.
Remark 1. Suppose \(X \) is a closed subprescheme of a noetherian prescheme \(Z \). Then for any integer \(n \), the following conditions are equivalent:

(a) \(H^n(X, \mathcal{F}) = 0 \) for all coherent \(O_X \)-modules \(\mathcal{F} \).

(b) \(H^n(Z, \mathcal{F}) = 0 \) for all quasi-coherent \(O_Z \)-modules \(\mathcal{F} \) with support in \(X \).

Indeed the implication (b) \(\Rightarrow \) (a) is clear. Conversely let \(\mathcal{F} \) be a quasi-coherent \(O_Z \)-module with support in \(X \). \(\mathcal{F} \) is the direct limit of its coherent submodules \(\mathcal{G} \) (cf. [2(a)], and \(H^n(Z, \mathcal{F}) \) is the direct limit of the \(H^n(Z, \mathcal{G}) \), by [3]; hence, we may assume \(\mathcal{F} \) is coherent.

Let \(X' \) be the subprescheme of \(Z \) defined by the annihilator of \(\mathcal{F} \). Then \(\mathcal{F} \) is a coherent \(O_X \)-module. Further the reduction \(X'' \) of \(X' \) is a subprescheme of \(X \) because its underlying space, which is the support of \(\mathcal{F} \), is contained in \(X \). Therefore (a) implies that the set \(K' \) of coherent \(O_X \)-modules \(\mathcal{F} \) such that \(H^n(X', \mathcal{F}) = 0 \) contains every coherent \(O_X \)-module; hence, it contains every coherent \(O_{X''} \)-module by the following lemma.

Lemma 1. Let \(X \) be a noetherian prescheme, and let \(K' \) be a set of coherent \(O_X \)-modules which satisfies the following two conditions:

1. For every exact sequence \(0 \rightarrow \mathcal{F}' \rightarrow \mathcal{F} \rightarrow \mathcal{F}'' \rightarrow 0 \) of coherent \(O_X \)-modules such that \(\mathcal{F}', \mathcal{F}'' \in K' \), also \(\mathcal{F} \in K' \).

2. For every irreducible component \(Y \) of \(X \) given its unique induced reduced structure and for every coherent \(O_Y \)-module \(\mathcal{F} \), \(\mathcal{F} \in K' \).

Then \(K' \) is the set of "all" coherent \(O_X \)-modules.

Indeed let \(Y_1, \ldots, Y_m \) be the irreducible components of \(X \), and let \(\mathcal{g}_1, \ldots, \mathcal{g}_m \) be their defining sheaves of ideals. Then \((\mathcal{g}_1 \cdots \mathcal{g}_m)^k = 0 \) for some integer \(k \). Now given a coherent \(O_X \)-module \(\mathcal{F} \), set \(\mathcal{F}_{ij} = \mathcal{g}_1^{i+1} \cdots \mathcal{g}_j^{j+1} \cdots \mathcal{g}_m^m \mathcal{F} \) for \(i = 0, \ldots, k \) and \(j = 1, \ldots, m \). The \(\mathcal{F}_{ij} \) ordered lexicographically, filter \(\mathcal{F} \). Their successive quotients are \(O_{Y_l} \)-modules for suitable \(l \), and so are in \(K' \) by (2). By (1) and by induction \(\mathcal{F} \in K' \).

Remark 2. Let \(Y \) be a locally noetherian prescheme, \(f: X \rightarrow Y \) a separated morphism of finite type, \(y \) a point of \(Y \), and \(n \) the dimension of \(f^{-1}(y) \). Then it is not true in general that

\[
(R^q f_* \mathcal{F})_y = 0
\]

for all coherent \(O_X \)-modules \(\mathcal{F} \) and all \(q > n \), so we cannot expect a relative form of the theorem.

For example, let \(Y \) be a nonsingular variety of dimension \(r > 2 \), \(y \) a closed point of \(Y \), \(X = Y - \{y\} \), and \(f: X \rightarrow Y \) the inclusion. Then via
local cohomology we easily compute that \(R^{r-1} f_* \mathcal{O}_X \) is the injective hull of \(k(y) \) supported at \(y \).

On the other hand, (*) does hold if \(f \) is proper, [2(b)].

Returning to the theorem, to prove \(H^s(X, \mathfrak{F}) \) is finite dimensional, we may assume \(X \) is reduced and irreducible by Lemma 1. Then if \(X \) is proper, \(H^s(X, \mathfrak{F}) \) is finite dimensional by the finiteness theorem [2(c)]; if \(X \) is nonproper, \(H^s(X, \mathfrak{F}) = 0 \) by the implication (i)\(\Rightarrow\)(ii) proved next.

To prove (i)\(\Rightarrow\)(ii), again by Lemma 1, we may assume \(X \) is reduced and irreducible. We may also assume \(\mathfrak{F} \) is torsion free. For let \(\mathfrak{I} \) be the torsion submodule of \(\mathfrak{F} \), and set \(\mathfrak{G} = \mathfrak{F}/\mathfrak{I} \). Then \(\mathfrak{G} \) is torsion free, and \(H^s(X, \mathfrak{G}) \cong H^s(X, \mathfrak{F}) \) because \(H^s(X, \mathfrak{I}) = 0 \). Finally we may assume \(X \) is normal by the following beautiful argument due to Grothendieck [2(d)].

Let \(X' \) be the normalization of \(X \) in its function field, and let \(f = (\Psi, \theta) : X' \to X \) be the canonical morphism. \(\theta : \mathcal{O}_X \to f_* \mathcal{O}_{X'} \) is an isomorphism on some open set \(U \) because \(f \) is birational. So \(\theta \) induces a map

\[
v : \mathfrak{G} = \text{Hom}_{\mathcal{O}_X} (f_* \mathcal{O}_{X'}, \mathfrak{F}) \to \text{Hom}_{\mathcal{O}_X} (\mathcal{O}_X, \mathfrak{F}) = \mathfrak{F},
\]

which is also an isomorphism on \(U \). The kernel of \(v \), \(\text{Hom}_{\mathcal{O}_X} (\text{Coker } \theta, \mathfrak{G}) \) is zero because \(\mathfrak{F} \) is torsion free and because \(\text{Coker } \theta \) is torsion, \(\theta \) being an isomorphism on \(U \). Thus we have the exact sequence

\[
0 \to \mathfrak{G} \to \mathfrak{F} \to \text{Coker } v \to 0,
\]

and it suffices to show \(H^s(X, \mathfrak{G}) = H^s(X, \text{Coker } v) = 0 \).

\(\text{Coker } v \) is torsion because \(v \) is an isomorphism on \(U \); hence \(H^s(X, \text{Coker } v) = 0 \). On the other hand, \(\mathfrak{G} \) is a coherent \(f_* \mathcal{O}_{X'} \)-module. Since \(X' \) is affine over \(X \), \(\mathfrak{G} = f_* \mathfrak{G}' \) for some coherent \(\mathcal{O}_{X'} \)-module \(\mathfrak{G}' \), and \(H^s(X, \mathfrak{G}) = H^s(X', \mathfrak{G}') \). But \(X' \) is nonproper because \(X \) is, and \(X' \) is normal.

Lemma 2. Let \(X \) be an irreducible normal algebraic scheme of dimension at least 2. Then there exists a closed irreducible subscheme \(Y \) of \(X \) such that \(X - Y \) is affine. Further \(Y \) is nonproper if \(X \) is.

Indeed let \((X', f)\) be a Chow cover of \(X \): \(X' \) is reduced and quasi-projective, \(f : X' \to X \) is proper and birational. Let \(E' \) be the exceptional locus of \(f \), the closed set of points \(x \in X' \) such that \(\dim f^{-1}(f(x)) \geq 1 \), or such that \(f \) is not birational at \(x \), equivalently \(X \) being normal. Let \(X'' \) be the closure of \(X' \) in some projective space, \(E'' \) the closure of \(E \) in \(X'' \), and set \(Z = E'' \cup (X'' - X') \). Blowing up \(Z \), we may assume \(Z \) is a Cartier divisor.
Let Y'' be an irreducible hypersurface section of X'', and let $Y = f(Y'' \cap X')$. Y is closed irreducible, and $X - Y$ is isomorphic to $X'' - (Z \cup Y'')$ because Y'' meets the fibre $f^{-1}(x)$ through every \(x \in E' \) and because f is an isomorphism off E'. But the Cartier divisor $Z + mY''$, $m > 0$, is very ample; hence, $X'' - (Z \cup Y'')$ is affine.

If X is nonproper, then X' is also nonproper. So $X'' - X'$ is nonempty and of pure codimension 1. Hence $Y'' \cap X'$ and $Y = f(Y'' \cap X')$ are nonproper.

To finish proving (i) \Rightarrow (ii), we proceed by induction on n, the dimension of X. $n \neq 0$, for otherwise X would be proper. If $n = 1$, X is affine; hence certainly $H^n(X, F) = 0$. Assume then $n \geq 2$.

Apply Lemma 2; let $U = X - Y$ and $i: U \to X$. Consider the canonical map $v: \mathcal{F} \to i_*i^*\mathcal{F}$. v is an isomorphism on U; hence Ker v and Coker v are torsion with support in Y. Because \mathcal{F} is torsion free, Ker v is zero, and we have the exact sequence

$$0 \to \mathcal{F} \to i_*i^*\mathcal{F} \to \text{Coker } v \to 0.$$

But $H^{n-1}(X, \text{Coker } v) = 0$ by induction and by Remark 1, while $H^n(X, i_*i^*\mathcal{F}) = 0$ by the following lemma.

Lemma 3. Let X be a scheme, U an affine subscheme, $i: U \to X$ the inclusion. Then for any quasi-coherent sheaf \mathcal{F} on U, $H^q(X, i_*i^*\mathcal{F}) = 0$ for all $q > 0$.

Indeed since X is separated, i is an affine morphism. Hence $H^q(X, i_*\mathcal{F}) = 0$ for all $q > 0$.

The implication (ii) \Rightarrow (iii) of the theorem is trivial. Conversely for all coherent \mathcal{F} and all $m > 0$, there exists a surjection $0 \to \mathcal{F} \to 0$; hence (iii) \Rightarrow (ii).

To prove (ii) \Rightarrow (i), we assume X is irreducible and proper, and we construct a coherent \mathcal{O}_X-module \mathcal{F} such that $H^n(X, \mathcal{F}) \neq 0$. First we reduce to the case X is quasi-projective by applying the following lemma to a Chow cover (X', f) of X.

Lemma 4. Let X be a noetherian prescheme of dimension n, $f: X' \to X$ a proper birational map, \mathcal{F} a coherent $\mathcal{O}_{X'}$-module. Then $H^n(X', \mathcal{F}) \neq 0$ implies $H^n(X, f_*\mathcal{F}) \neq 0$.

Indeed for $q = 0, 1, \ldots, n - 1$ let Z_q be the closed set of points $x \in X$ such that dim $f^{-1}(x) \geq n - q$. By Remark 2, $R^{n-q}f_*\mathcal{F}$ has support in Z_q. But dim $f^{-1}(Z_q) \leq n - 1$ because f is an isomorphism on an open set. Hence dim $Z_q \leq (n - 1) - (n - q) = q - 1$. Therefore $H^q(X, R^{n-q}f_*\mathcal{F}) = H^q(Z_q, R^{n-q}f_*\mathcal{F}) = 0$, and the Leray spectral sequence yields a surjection.
\[
H^n(X, f_*\mathcal{F}) \to H^n(X', \mathcal{F}) \to 0,
\]

completing the proof of the lemma.

Finally, when \(X\) is projective, we prove \(H^n(X, \mathcal{O}_X(-m)) \neq 0\) for \(m \gg 0\). We simply bound \(\dim H^q(X, \mathcal{O}_X(-m))\) by a polynomial \(P_X(m)\) of degree \(\leq n - 1\), for \(q \leq n - 1\) and \(m \geq 0\). For then \(\dim H^n(X, \mathcal{O}_X(-m)) \geq \chi(\mathcal{O}_X(m)) - n P_X(m) = (\deg X/n!)m^n + \cdots\). We construct \(P_X(m)\) by induction on \(n\). When \(n = 0\), we take \(P(m) = 0\). When \(n > 0\), we find a hyperplane section \(H\) of \(X\) which avoids \(\text{Ass} X\). Then the sequence

\[
0 \to \mathcal{O}_X(-m - 1) \to \mathcal{O}_X(-m) \to \mathcal{O}_H(-m) \to 0
\]

is exact and yields \(\dim H^q(X, \mathcal{O}_X(-m - 1)) - \dim H^q(X, \mathcal{O}_X(-m)) \leq \dim H^q(H, \mathcal{O}_H(-m)) \leq P_H(m)\); whence we may construct \(P_X\) from \(P_H\) and \(\dim H^q(X, \mathcal{O}_X)\).

References

 (a) (I, 9.4.9, Corollaire).
 (b) (III, 4.2.2, Corollaire).
 (c) III, 3.2.3, Corollaire.
 (d) II, 6.7, Chevalley's theorem.