On the vanishing of $H^n(X, \mathcal {F})$ for an $n$-dimensional variety
HTML articles powered by AMS MathViewer
- by Steven L. Kleiman
- Proc. Amer. Math. Soc. 18 (1967), 940-944
- DOI: https://doi.org/10.1090/S0002-9939-1967-0213369-9
- PDF | Request permission
References
- R. Hartshorne, Local cohomology, Lecture notes, Harvard Univ., Cambridge, Mass., 1962, p. 100.
A. Grothendieck, Éléments de géométrie algébrique, Inst. Hautes Etude Sci., Paris, 1960. (a) (I, 9.4.9, Corollaire). (b) (III, 4.2.2, Corollaire). (c) III, 3.2.3, Corollaire. (d) II, 6.7, Chevalley’s theorem.
- Roger Godement, Topologie algébrique et théorie des faisceaux, Publ. Inst. Math. Univ. Strasbourg. No. 13, Hermann, Paris, 1958 (French). MR 0102797
Bibliographic Information
- © Copyright 1967 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 18 (1967), 940-944
- MSC: Primary 14.55
- DOI: https://doi.org/10.1090/S0002-9939-1967-0213369-9
- MathSciNet review: 0213369