ON TYPE I C^*-ALGEBRAS

SHÔICHIRO SAKAI

1. Introduction. Recently, the author [4] proved the equivalence of type I C^*-algebras and GCR C^*-algebras without the assumption of separability. On the other hand, for separable type I C^*-algebras, we have a simpler criterion as follows: a separable C^*-algebra \mathfrak{A} is of type I if and only if every irreducible image contains a nonzero compact operator.

It has been open whether or not this remains true when \mathfrak{A} is not separable (cf. [1], [2], [3]).

In the present paper, we shall show that a C^*-algebra \mathfrak{A} is GCR if and only if every irreducible image contains a nonzero compact operator, so that by the author's previous theorem [4], the above problem is affirmative for arbitrary C^*-algebra.

2. Theorem. In this section, we shall show the following theorem.

Theorem. A C^*-algebra \mathfrak{A} is of type I if and only if every irreducible image contains a nonzero compact operator.

Proof. Suppose that a C^*-algebra \mathfrak{A} is of type I, then it is GCR and so every irreducible image contains a nonzero compact operator (cf. [1], [2], [3], [4]).

Conversely suppose that every irreducible image of \mathfrak{A} contains a nonzero compact operator. It is enough to assume that \mathfrak{A} has the unit I. We shall assume that \mathfrak{A} is not of type I. Then it is not GCR; then there is a separable non-type I C^*-subalgebra \mathfrak{B} of \mathfrak{A} (cf. [2], [4]). Take a pure state ϕ on \mathfrak{B} such that the image of \mathfrak{B} under the irreducible $*$-representation $\{U_\phi, \mathfrak{H}_\phi\}$ of \mathfrak{B} constructed via ϕ does not contain any nonzero compact operator, where \mathfrak{H}_ϕ is a Hilbert space.

Received by the editors September 12, 1966.

1 This paper was written with partial support from ONR Contract NR-551(57).
Let \mathcal{E} be the set of all pure states ψ on \mathfrak{A} such that $\psi = \phi$ on \mathfrak{B}. We shall define a partial ordering \prec in \mathcal{E} in the following. Take $\psi \in \mathcal{E}$, and
\{\pi_\psi, \mathfrak{H}_\psi\} be the irreducible *-representation of \mathfrak{A} constructed via ψ, then $\pi_\psi(\mathfrak{H})$ contains a nonzero compact operator; hence $\pi_\psi(\mathfrak{H})$ contains the algebra $C(\mathfrak{H}_\psi)$ of all compact operators (cf. [1]). Let $\mathfrak{D}(\psi) = \pi_\psi^{-1}(C(\mathfrak{H}_\psi))$, then $\mathfrak{D}(\psi)$ is an ideal of \mathfrak{A}. For $\psi_1, \psi_2 \in \mathcal{E}$, we shall define the order as follows: $\psi_1 \prec \psi_2$ if $\mathfrak{D}(\psi_1) \subset \mathfrak{D}(\psi_2)$. Let $\{\psi_{\alpha}| \alpha \in \Pi\}$ be a linearly ordered subset of \mathcal{E}, and let \mathfrak{D} be the uniform closure of $U_{\alpha \in \Pi} \mathfrak{D}(\psi_{\alpha})$, then \mathfrak{D} is an ideal of \mathfrak{A}. Let \mathfrak{F} be the kernel of the representation $\{U_{\phi}, \mathfrak{H}_\phi\}$ of \mathfrak{B}. First of all we shall show that $\mathfrak{B} \cap \mathfrak{D} \subset \mathfrak{F}$. Suppose that $\mathfrak{B} \cap \mathfrak{D} \subset \mathfrak{F}$, then there is an element $b \in (\mathfrak{B} \cap \mathfrak{D}) \cap \mathfrak{F}^c$ and $b_n \in \mathfrak{D}(\psi_{\alpha})$ for $n = 1, 2, 3, \ldots$ such that $\|U_\phi(b)\| = 1$ and $\|b - b_n\| < 1/n$ for $n = 1, 2, 3, \ldots$, where \mathfrak{F}^c is the complement of \mathfrak{F} in \mathfrak{B}.

Take the representation $\{\pi_{\psi_{\alpha}}, \mathfrak{H}_{\psi_{\alpha}}\}$ of \mathfrak{A}, then $\|\pi_{\psi_{\alpha}}(b) - \pi_{\psi_{\alpha}}(b_n)\| < 1/n$.

Let $[\pi_{\psi_{\alpha}}(\mathfrak{B})]I_{\psi_{\alpha}}$ be the closed subspace generated by $\pi_{\psi_{\alpha}}(\mathfrak{B})I_{\psi_{\alpha}}$, where $I_{\psi_{\alpha}}$ is the image of I in $\mathfrak{H}_{\psi_{\alpha}}$, and let E_n' be the orthogonal projection of $\mathfrak{H}_{\psi_{\alpha}}$ onto $[\pi_{\psi_{\alpha}}(\mathfrak{B})]I_{\psi_{\alpha}}$. Then the representation $y \mapsto \pi_{\psi_{\alpha}}(y)E_n'$ for $y \in \mathfrak{B}$ is equivalent to $\{U_\phi, \mathfrak{H}_\phi\}$.

On the other hand, $\|E_n' \pi_{\psi_{\alpha}}(b)E_n' - E_n' \pi_{\psi_{\alpha}}(b_n)E_n'\| < 1/n$, and $E_n' \pi_{\psi_{\alpha}}(b_n)E_n'$ is a compact operator on $E_n' \mathfrak{H}_{\psi_{\alpha}}$. Hence, there is a compact operator T_α on \mathfrak{H}_ϕ such that $\|U_\phi(b) - T_\alpha\| < 1/n$, because $E_n' \pi_{\psi_{\alpha}}(b)E_n' = \pi_{\psi_{\alpha}}(b)E_n'$. Therefore, $U_\phi(b)$ is a nonzero compact operator on \mathfrak{H}_ϕ; this is a contradiction and so $\mathfrak{B} \cap \mathfrak{D} \subset \mathfrak{F}$.

Next, let us consider a C^*-algebra $\mathfrak{A}/\mathfrak{D}$, then $\mathfrak{B} + \mathfrak{D}/\mathfrak{D}$ is a C^*-subalgebra of $\mathfrak{A}/\mathfrak{D}$, because every *-homomorphic image of a C^*-algebra into another C^*-algebra is closed and the mapping $x \mapsto x + \mathfrak{D}(x \in \mathfrak{B})$ of \mathfrak{B} into $\mathfrak{A}/\mathfrak{D}$ is *-homomorphic.

The state ϕ on \mathfrak{B} can be canonically considered a pure state on $\mathfrak{B} + \mathfrak{D}/\mathfrak{D}$, because $\mathfrak{B} \cap \mathfrak{D} \subset \mathfrak{F}$ and the C^*-algebra $\mathfrak{B} + \mathfrak{D}/\mathfrak{D}$ is *-isomorphic to the C^*-algebra $\mathfrak{B}/\mathfrak{D}$. Take a pure state extension ϕ of ϕ to $\mathfrak{A}/\mathfrak{D}$, then we can define a pure state ψ of \mathfrak{A} by $\psi(y) = \phi(y + \mathfrak{D})$ for $y \in \mathfrak{A}$. Then we have $\psi = \phi$ on \mathfrak{B} and so $\psi \in \mathcal{E}$.

Clearly $\mathfrak{D}(\psi_{\alpha}) \subset \mathfrak{D}(\chi)$; hence $\psi_{\alpha} \prec \psi$, and so by Zorn's lemma \mathcal{E} contains a maximal element ψ_0.

Now we shall show $\mathfrak{D}(\psi_0) \cap \mathfrak{B} \subset \mathfrak{F}$. Assume that $\mathfrak{D}(\psi_0) \cap \mathfrak{B} \subset \mathfrak{F}$, then by the analogous discussion with the above, ϕ can be canonically considered a pure state on a C^*-subalgebra $\mathfrak{B} + \mathfrak{D}(\psi_0)/\mathfrak{D}(\psi_0)$ of $\mathfrak{A}/\mathfrak{D}(\psi_0)$; therefore we can have a pure state ψ_β on \mathfrak{A} such that $\psi_\beta(\mathfrak{D}(\psi_0)) = 0$ and $\psi_\beta = \phi$ on \mathfrak{B}; hence $\mathfrak{D}(\psi_\beta) \subset \mathfrak{D}(\psi_0)$, a contradiction.

On the other hand, $\mathfrak{D}(\psi_0) \cap \mathfrak{B} \subset \mathfrak{F}$ also implies a contradiction, be-
cause $\pi_{\psi_0}(b)$ is a compact operator on \mathcal{D}_{ψ_0} for some $b \in (\mathcal{D}(\psi_0) \cap \mathcal{B})^c$; hence $\pi_{\psi_0}(b)E'$ is compact, where E' is the orthogonal projection of \mathcal{D}_{ψ_0} onto $[\pi_{\psi_0}(\mathcal{B})I_{\psi_0}]$; hence $U_\phi(b) = 0$ and so $b \in \mathcal{F}$.

Hence we can conclude that \mathfrak{A} is of type I. This completes the proof.

REFERENCES

UNIVERSITY OF PENNSYLVANIA