1. Introduction. We shall use the symbol H^∞ for the class of functions that are analytic and bounded in the unit disk D, and the symbol A for the class of elements of H^∞ that are continuous on the closure of D. For notational convenience, we shall often regard the unit circle C and the interval $[0, 2\pi]$ as interchangeable. The purpose of this note is to prove the following theorem.

Theorem 1. Let the sequence $\{a_0, a_1, \ldots\}$ of complex numbers have the property that for each function $\sum b_n z^n$ in H^∞ the limit

$$\lim_{r \to 1} \sum a_n b_n r^n$$

exists and is finite. Then there exists a function $\phi \in L^1(0, 2\pi)$ such that

$$a_n = \frac{1}{2\pi} \int_0^{2\pi} \phi(t)e^{int} dt = \hat{\phi}(n) \quad (n \geq 0).$$

The converse is also true.

This result was conjectured by A. E. Taylor in 1951 (see [7, p. 33]). The analogous proposition for two-sided sequences $\{\ldots, a_{-1}, a_0, a_1, \ldots\}$, with the space H^∞ of bounded analytic functions replaced by L^∞ and with Abel convergence replaced by Cesàro convergence, had been established by H. Steinhaus [6] in 1919.

To view the relations a little differently: if the sequence $\{a_n\}$ has the property described in our theorem, then it defines an additive, homogeneous functional on H^∞. The theorem answers in the affirmative the question (raised in [5, p. 275]) whether this functional is continuous when the weak-star topology is imposed on H^∞ as a subspace of L^∞.

In §§2 and 3, we give a proof of Theorem 1. The crucial step is the construction of a Blaschke product whose absolute value is small on certain sets and is near to 1 (with closely controlled argument) on certain other sets. In §4, we examine Theorem 1 as a statement about multiplier transforms on certain sequence spaces.
2. **A Borel measure associated with \(\{a_n\} \).**

Lemma 1. If the sequence \(\{a_n\} \) satisfies the hypothesis in Theorem 1, then there exists a finite, complex-valued Borel measure \(\mu \) on \([0, 2\pi]\) such that

\[
a_n = \int e^{int} \, d\mu(t) = \bar{\mu}(n) \quad (n \geq 0).
\]

Proof. We may assume that the sequence \(\{a_n\} \) is bounded, since otherwise the limit (1) would be infinite for some absolutely convergent series \(\sum b_n \). For each \(r \) \((0 < r < 1) \) and each element \(f \) of \(A \), let

\[
\lambda_r(f) = \sum_{n=0}^{\infty} a_n b_n r^n.
\]

Since \(\{a_n\} \) is bounded, each \(\lambda_r \) is a bounded linear functional on \(A \), and by virtue of the Hahn-Banach theorem, we may extend it to a bounded linear functional (with the same norm) on the space of all complex-valued continuous functions on the unit circle \(C \). By a theorem of F. Riesz, there exists a finite Borel measure \(\mu_r \) such that

\[
\text{Var} \mu_r = \|\lambda_r\| \quad \text{and} \quad \lambda_r(f) = \int f \, d\mu_r \quad (f \in A).
\]

The hypothesis of Theorem 1 requires that for each \(f \) the set \(\{\lambda_r(f)\} \) \((0 < r < 1) \) is bounded. Hence, by the uniform-boundedness principle, the norms \(\|\lambda_r\| \) are bounded. By the weak-star compactness of measures, there exists a measure \(\mu \) such that

\[
\lim \int f \, d\mu_r = \int f \, d\mu \quad (f \in A).
\]

To complete the proof of Lemma 1, we take successively the functions \(f(z) = z^n \) \((n = 0, 1, \ldots)\).

3. **Absolute continuity of \(\mu \).** The absolute continuity of the measure \(\mu \) constructed in §2 is a consequence of the following theorem.

Theorem 2. Let \(\mu \) be a finite, complex-valued Borel measure on \(|z| = 1 \) such that

\[
\lim_{r \to 1} \int f(re^{it}) \, d\mu(t)
\]

exists for all Blaschke products \(f \). Then \(\mu \) is absolutely continuous.
Remark 1. Theorem 2 is a generalization of the following theorem of F. and M. Riesz: A measure whose Fourier-Stieltjes coefficients vanish on one side is absolutely continuous. Indeed, if \(\hat{\mu}(n) = 0 \) \((n > 0) \), then \(\int fd\mu = 0 \) for all \(f \in H^\infty \) (in particular, for all Blaschke products), and thus the limit (2) exists.

Remark 2. Let \(S_\mu \) denote the collection of all \(f \in H^\infty \) for which the limit (2) exists. Clearly, \(S_\mu \) is a vector subspace of \(H^\infty \). Further, it is a closed set in the metric of \(H^\infty \) (the proof of this leads to a double limit, but one of the limits is uniform over the whole open disk, not merely over compact subsets). By the hypothesis of Theorem 2, \(S_\mu \) contains all Blaschke products. The following question (see [4, p. 855, Problem C]) remains open. Does there exist a proper closed vector subspace of \(H^\infty \) that contains all Blaschke products?

Remark 3. We do not know whether Theorem 1 remains valid if in the hypothesis we merely require that the limit (1) exists for all Blaschke products \(f = \sum b_n z^n \), rather than for all \(f \in H^\infty \).

Proof of Theorem 2. We must show that \(\mu(F) = 0 \) for each Borel set \(F \) of Lebesgue measure 0 (on \(C \) or on \([0, 2\pi] \)). By the regularity of the measure, it is enough to prove the proposition for closed sets \(F \). Our proof will proceed by contradiction: we shall assume that \(\mu(F) \neq 0 \) for some (fixed) closed set \(F \) of Lebesgue measure 0.

We shall require several lemmas. In each lemma, we assume the hypothesis of Theorem 2. For \(0 < r < 1 \), we use the notation \(f_r(z) = f(rz) \).

Lemma 2. Without loss of generality, we may assume that
\[
\Re \mu(E) \geq 0 \quad \text{and} \quad \Im \mu(E) \geq 0
\]
for all Borel sets \(E \subseteq F \).

Proof. This follows from the Jordan decomposition theorem for measures: the measure \(\Re \mu \), restricted to the set \(F \), is the difference of two positive measures that live on disjoint subsets of \(F \); a corresponding statement applies to \(\Im \mu \). Thus, if \(F \) does not have the property in the lemma, we simply replace it with a subset \(E \) on which each of \(\Re \mu(E) \) and \(\Im \mu(E) \) has constant sign. Multiplication of \(\mu(E) \) with the appropriate power of \(i \) then gives the desired result.

Lemma 3. The limit
\[
\lim_{r \to 1} \int_{F_p} f_r d\mu
\]
exists for every Blaschke product \(f \).
Proof. If \(f \) is a Blaschke product, then

\[
\lim_{r \to 1} \int f_r h d\mu
\]

exists for each \(h \) in the space \(A \) of uniformly continuous analytic functions. This follows immediately from the hypothesis if \(h \) is a power of \(z \); the general case then follows from Remark 2, since the polynomials are dense in \(A \).

Next we observe that \(\lim \int f_r h d\mu \) exists for each \(h \in A \), since

\[
\int f_r \cdot (h_r - h) d\mu \leq ||f|| \cdot ||h_r - h|| \text{ Var}(\mu) \to 0.
\]

Next we choose a function \(g \in A \) such that \(g = 1 \) on \(F \) and \(|g| < 1 \) on the complement \(F' \) of \(F \) (concerning the existence of such a function, see [2, Chapter VI, p. 81]). Then

\[
\int f_r d\mu = \int f_r g^n d\mu - \int f_r g^n d\mu.
\]

For each \(n \), the first term on the right has a limit, as we have just seen; for large \(n \), we can make the second term on the right arbitrarily small (uniformly in \(r \)), since

\[
\left| \int f_r g^n d\mu \right| \leq ||f|| \int |g|^n d\mu
\]

and the right member tends to zero as \(n \to \infty \), by bounded convergence.

Lemma 4. There exist closed sets \(I_p \) (\(p = 1, 2, \ldots \)) such that

(i) each set \(I_p \) is the union of a finite number \(m_p \) of closed arcs \(I_{p j} \) (\(j = 1, 2, \ldots, m_p \)), all having the same length \(d_p \),

(ii) \(m_p d_p < 1/p^2 \),

(iii) \(F = \bigcap I_p \).

Proof. Let \(F_n \) denote the set of points whose distance from \(F \) is at most \(2\pi/n \). Then

\[
F_1 \supset F_2 \supset \cdots \supset F_n \supset F,
\]

and therefore \(|F_n| \to 0 \) (by \(|M| \) we denote the Lebesgue measure of the set \(M \)).

For each natural number \(n \), we divide the unit circle into \(2n \) equal closed subarcs, and we denote by \(J_n \) the union of the arcs that meet...
the set F. Then $J_n \subset F_n$, and therefore $|J_n| \to 0$. Finally, we extract a subsequence $\{J_{n_p}\}$ such that $|J_{n_p}| < 1/p^2$, and we write $I_p = J_{n_p}$.

Lemma 5. Let $r < 1$ and $\epsilon > 0$ be fixed. Then there exist a number $s (r < s < 1)$ and a finite Blaschke product $b(z)$ whose m zeros all lie on the circle $|z| = s$, such that

(i) $(1 - s)m < \epsilon$,
(ii) $|b(se^{it})| < \epsilon$ ($e^{it} \in F$),
(iii) $|b(z) - 1| < \epsilon (|z| \leq r)$.

Proof. We define the positive number s_p by the equation

$$1 - s_p^2 = pd_p.$$

Then $0 < s_p < 1$ and $s_p \to 1$. Let z_{pj} denote the midpoint of the arc $s_p I_{pj}$. For each z on this arc, $|z_{pj} - z| < dp/2$, and therefore

$$|z_{pj} - z|/(1 - z_{pj}^2) \leq dp/2(1 - s_p^2) = 1/2p.$$

Hence the finite product

$$b_p(z) = \prod_{1 \leq j \leq m_p} \frac{|z_{pj}|}{z_{pj}} \frac{z_{pj} - z}{1 - z_{pj}^2}$$

satisfies the inequality $|b_p(z)| < 1/2p$ for all $z \in s_p I_p$.

The number of factors of b_p is m_p, and

$$(3) \quad m_p(1 - s_p) < m_p(1 - s_p^2) = pm_pdp < 1/p.$$

Thus the finite Blaschke product $b_p(z)$ satisfies (i) and (ii) for all $p > 1/\epsilon$.

To discuss (iii), we need the formula

$$|a| \cdot \frac{a - z}{1 - az} = 1 - \epsilon_a(z),$$

where

$$\epsilon_a(z) = (a + |a| z)(1 - |a|)/a(1 - \bar{a}z).$$

We shall assume that $1/2 < |a| < 1$. Then

$$|\epsilon_a(z)| \leq 4(1 - |a|)/|1 - \bar{a}z|,$$

and for $|z| \leq r$,

$$|\epsilon_a(z)| \leq 4(1 - |a|)/(1 - r|a|) \leq 4(1 - |a|)/(1 - r).$$

Now consider the finite product $b_p(z)$, with p large enough so that $s_p > 1/2$ and $s_p > r$. To simplify the notation, we write

\[b_p(z) = \prod (1 - e_\alpha(z)), \]

where the product has \(m_p \) factors.

For \(|z| \leq r\), we have the inequalities

\[|b_p(z) - 1| \leq \prod (1 + |e_\alpha(z)|) - 1 \leq (\exp \sum |e_\alpha(z)|) - 1. \]

By (6),

\[\sum |e_\alpha(z)| \leq 4m_p(1 - s_p)/(1 - r), \]

and therefore (3) implies that \(b_p \) satisfies (iii) if \(p \) is large enough.

Lemma 6. Suppose \(b_0(z) \) is a finite Blaschke product, \(\epsilon > 0 \), and \(0 < r < 1 \). Then we can find a number \(s \) \((r < s < 1)\) and a finite Blaschke product \(b(z) \) whose \(m \) zeros all lie on the circle \(|z| = s\), such that

(i) \((1 - s)m < \epsilon \),

(ii) \(\left| \int_{F_0} b_0(se^{it})b(se^{it})d\mu(t) \right| > |\mu(F)|/24, \)

(iii) \(|b(z) - 1| < \epsilon \left(|z| \leq r \right) \).

Proof. We divide the unit circle into eight equal open arcs \(J_1, \cdots, J_8 \) whose end points all lie in the complement of \(b_0(F) \) (this is possible, since \(b_0(F) \) is nowhere dense). We then define the sets

\[E_k = \{ e^{it}; b_0(e^{it}) \in J_k \} \quad (k = 1, 2, \cdots, 8). \]

These sets are open and disjoint, and they cover \(F \). We write \(F_k = F \cap E_k \). Without loss of generality, we may assume that \(|\mu(F_1)| \geq |\mu(F)|/8. \)

We shall now use the geometrically obvious fact that if \(w_m = r_m e_m^u \) \((m = 1, 2, \cdots, n; 0 \leq t_m \leq 3\pi/4)\), then \(|\sum w_m| \geq c \sum |w_m| \), where

\[c = \frac{1}{2} \left| 2 - \sqrt{2} \right|^{1/2} > 1/3. \]

Together with Lemma 2, it implies that

\[\left| \int_{F_1} b_0(e^{it})d\mu(t) \right| > |\mu| (F_1)/3 \geq |\mu(F_1)|/3 \geq |\mu(F)|/24, \]

where \(|\mu| (F_1) \) denotes the total variation of \(\mu \) over \(F_1 \).

Let \(s_p \) be defined as in the proof of Lemma 5. If \(s_p \) is near enough to \(1 \), then

\[\left| \int_{F_1} b_0(s_p e^{it})d\mu(t) \right| > |\mu(F)|/24, \]

by the uniform continuity of \(b_0(z) \).

Let \(\delta = \text{dist} (F_1, F \setminus F_1) \). With the notation of Lemma 4, choose \(\rho \)
large enough so that \(d_p < \delta \). In (4), let \(|a| = s_p \) and \(z = au \), with \(|u| = 1 \). Since \(|1 - u| \leq 2 \left| 1 - s_p^2 u \right| \), it follows from (5) that

\[
|\varepsilon_a(z)| \leq 4(1 - s_p)/\left| 1 - s_p^2 u \right| \leq 8(1 - s_p)/\left| 1 - u \right|.
\]

For a fixed \(p \), we select among the arcs \(I_{pj} \) (\(j = 1, \ldots, m_p \)) those that do not meet \(F_i \) (since \(d_p < \delta \), none of the arcs \(I_{pj} \) meeting \(F_i \) meets any of the other sets \(F_k \)).

We denote the midpoints of the selected arcs by \(z_{pj} \), and we form the finite Blaschke product

\[
b_p(z) = \prod \frac{|z_{pj}|}{z_{pj}} \frac{z_{pj} - z}{1 - \bar{z}_{pj} z}.
\]

Since the product has at most \(m_p \) factors, it satisfies condition (i) of the lemma. Just as in the proof of Lemma 5, we have the inequality

\[
|b_p(z)| < 1/2p \quad \text{for} \quad z/s_p \in (F/F_i).
\]

If \(z/s_p \in F_i \) and \(a \) denotes the midpoint \(z_{pj} \) of some selected interval, we can write \(z = au \), where \(|u| = 1 \) and \(|\arg u| > \delta/2 \). Therefore (9) implies that \(|\varepsilon_a(z)| \leq c(1 - s_p)/\delta \), for some constant \(c \), and therefore

\[
\sum |\varepsilon_a(z)| \leq cm_p(1 - s_p)/\delta.
\]

By (7) and (11) we see that if \(p \) is large enough, then \(b_p(z) \) is arbitrarily near to 1 on \(s_pF_i \) and arbitrarily small on \(s_p(F/F_i) \); therefore, in view of (8), condition (ii) of the lemma is satisfied.

Finally, just as in the proof of Lemma 5, we can show that \(b_p(z) \) satisfies condition (iii) if \(p \) is large enough. This completes the proof of Lemma 6.

To prove Theorem 2, we use alternately Lemmas 5 and 6 to construct an infinite Blaschke product

\[
f(z) = \prod b_n(z)
\]

with the following properties:

(i) all the zeros of \(b_n(z) \) lie on a circle \(|z| = r_n \);
(ii) if \(n \) is odd and \(e^{it} \in F \), then \(|b_n(r_n e^{it})| < 1/n \);
(iii) if \(n \) is even, then

\[
\left| \int_{F} f_n(r_n e^{it})d\mu(t) \right| > |\mu(F)|/24,
\]

where \(f_n = b_1 \cdots b_n \);
(iv) for large values of \(n \), the product \(b_{n+1}b_{n+2} \cdots \) is close to 1 on the disk \(|z| \leq r_n \).
Clearly, the function \(f \) satisfies the inequalities

\[
\left| \int f(r_n e^{it}) d\mu(t) \right| \leq \frac{|\mu(F)|}{n} \quad (n \text{ odd}),
\]
\[
\left| \int f(r_n e^{it}) d\mu(t) \right| > \frac{|\mu(F)|}{24} \quad (n \text{ even}).
\]

Since this contradicts Lemma 3, the proof of Theorem 2 is complete.

The converse part of Theorem 1 is well known, and we merely indicate a proof. If \(\phi \in L^1 \) and \(f \in L^\infty \) (in particular, if \(f \in H^\infty \)), then the convolution \(\phi \ast f \) is a continuous function. The Abel mean of the Fourier series of a continuous function converges to the function uniformly; in particular, it converges at the point \(z = 1 \). This is precisely the assertion that the limit (1) exists.

4. Multiplier transforms. Let \(X \) and \(Y \) be two spaces of sequences, and let \(\{\lambda_n\} \) be a fixed sequence.

Definition. \(\{\lambda_n\} \) is of class \((X, Y)\) if \(\{\lambda_n a_n\} \in Y \) for each \(\{a_n\} \in X \).

Let \(R \) denote the space of bounded analytic functions in \(D \) whose radial limit exists on every radius. We may regard \(R \) and \(A \) (see §1) as spaces of sequences (Taylor coefficients).

Let \(L^+ \) denote the space of sequences that constitute one side of the sequence of Fourier coefficients of some integrable function, and let \(S^+ \) denote the space of sequences that constitute one side of the sequence of Fourier-Stieltjes coefficients of some measure. That is, let \(\{a_n\} \in L^+ \) if \(\{a_n\} \in S^+ \) if and only if there exists a function \(\phi \in L \) (a measure \(\mu \)) such that

\[
a_n = \hat{\phi}(n) \quad (a_n = \hat{\mu}(n)) \quad \text{for } n \geq 0.
\]

From Theorem 1 we obtain the following result.

Theorem 3. \((H^\infty, R) = (H^\infty, A) = (S^+, L^+) = L^+\).

Proof. The equation \((H^\infty, R) = L^+\) is merely a restatement of Theorem 1. Indeed, the existence of the limit (1) is precisely the existence of the radial limit along the unit interval; the existence of the limit along any other radius follows by rotation.

Clearly, \((H^\infty, A) \subset (H^\infty, R) = L^+.\) Conversely, the convolution of a function in \(L^1 \) with a function in \(L^\infty \) is continuous.

The identity sequence \(\{1, 1, \cdots\} \) is in \(S^+ \), and therefore \((S^+, L^+) \subset L^+.\) The reverse inclusion follows from the fact that \((S, L) = L\) for two-sided sequences (see Zygmund [8, Chapter IV, Theorem 11.10]). This completes the proof of the theorem.
The third equation in Theorem 3, \((S_+, L_+) = L_+\), is in some sense a dual of the second equation, \((H^\infty, A) = L_+\). As we have just seen, it is easy to prove. However, we do not know how to establish the second equation without going through Theorem 1. Perhaps this is to be expected; for although \(S_+\) is the conjugate space of the Banach space \(A\), the space \(L_+\) only becomes the full dual of \(H^\infty\) when \(H^\infty\) is given the weak-star topology; as we mentioned in the Introduction, Theorem 1 may be regarded as a statement about weak-star continuous linear functionals on \(H^\infty\).

In conclusion, we mention a conjecture that seems to be difficult to settle (it implies Theorem 1).

Conjecture. Let \(\{\phi_n\}\) be a sequence of elements in \(L\) such that
\[
\lim_{n \to \infty} \int \phi_n f \text{ exists for each } f \in H^\infty.
\]
Then there exists a \(\phi \in L\) such that
\[
\lim_{n \to \infty} \int \phi_n f = \int \phi f \quad \text{for all } f \in H^\infty.
\] (13)

To state the problem differently: is the quotient Banach space \(L/H\) weakly sequentially complete? (This question was raised in [1, pp. 180–181].) The analogous result for \(L\) instead of \(L/H\) (that is, with \(L^\infty\) instead of \(H^\infty\) in the statement above) was proved by Steinhaus [6] (see also the proof in Zygmund [8, Chapter IV, Theorem 9.13]).

In the paper immediately following this one, Kahane [3] gives a partial affirmative answer to the conjecture. He shows that there exists a \(\phi \in L\) such that the relation (13) holds for all \(f \in A\). This is enough to imply Theorem 1.

References