ANOTHER THEOREM ON BOUNDED
ANALYTIC FUNCTIONS

JEAN-PIERRE KAHANE

This note is an attempt to solve the conjecture stated at the end of the preceding paper [1]. We are able to prove the following.

Theorem 1. Let \(\{\phi_n\} \) be a sequence of summable functions on the circle such that

\[
\lim_{n \to \infty} \int f \phi_n
\]

exists for all \(f \in H^\infty \) (space of bounded functions on the circle with a positive spectrum; the integral is taken over the circle). Then there is a \(\phi \in L^1 \) such that

\[
l(f) = \int f \phi
\]

for all \(f \in A \) (space of continuous functions on the circle with a positive spectrum).

Proof. As in [1] we see first that there exists a measure \(d\mu \) on the circle such that \(l(f) = \int fd\mu \) whenever \(f \in A \). Let us prove that \(d\mu \) is absolutely continuous.

Suppose that \(d\mu \) is not absolutely continuous. Let \(E \) be a closed set on the circle, with Lebesgue measure zero, such that \(\int_E d\mu = \mu(E) \neq 0 \). Let \(h \) be a function in \(A \) such that \(h = 1 \) on \(E \) and \(|h| < 1 \) outside (the existence of such a function is well known; it is used also in [1]). We have the following equalities (\(m = 1, 2, \ldots; n = 1, 2, \ldots \)):

1. \(\lim_{m \to \infty} \int h^m d\mu = \mu(E) \),
2. \(\lim_{m \to \infty} \int h^m \phi_n = 0 \) for all \(n \)'s,
3. \(\lim_{n \to \infty} \int h^n \phi_n = \int h^m d\mu \) for all \(m \)'s.

If the sequence \(m_j \) is rapidly increasing (meaning that \(m_{j+1} \) is sufficiently large when \(m_j \) is given), we have

\[
f = \sum_{j=1}^{\infty} (-1)^j h^{m_j} \in H^\infty.
\]

For, given \(m_j \), we define \(E_j \) as the set where \(|h^{m_j} - 1| < 2^{-j} \), and we have \(|h^{m_{j+1}}| < 2^{-j} \) on \(CE_j \) when \(m_{j+1} \) is large enough. We shall write \(L_1 \) for this condition on the \(m_j \).

Received by the editors July 10, 1966.

827
We shall define by induction two sequences \(m_j \) (satisfying \(L_1 \)) and \(n_j \). We shall use the formula

\[
\int f \phi_{n_j} = \sum_{k=1}^{j-1} (-1)^k \int h^{m_k} \phi_{n_j} + (-1)^j \int h^{m_j} \phi_{n_j} + \sum_{k=j+1}^{\infty} (-1)^k \int h^{m_k} \phi_{n_j},
\]

\[
= A_j + B_j + C_j.
\]

We write \(L_2 \) for the condition

\[
\sum_{k=j+1}^{\infty} \left| \int h^{m_k} \phi_{n_j} \right| < \frac{1}{12} | \mu(E) | ;
\]

by (2), it is satisfied when \(m_{j+1}, m_{j+2}, \ldots \) are chosen large enough, \(n_j \) being given. We write \(L_3 \) for the condition

\[
\left| \int h^{m_j} d\mu \right| > \frac{11}{12} | \mu(E) | ;
\]

by (1), it is satisfied when \(m_j \) is large. Now suppose that \(m_1, \ldots, m_{j-1}, n_1, \ldots, n_{j-1} \) are given in such a manner that the conditions \(L_1, L_2, L_3 \) are satisfied at this stage. They will be satisfied at the following stage if \(m_j \) is sufficiently large, \(m_j \geq m^*_j \), say. We define \(n^*_j \) so that \(n \geq n^*_j \) implies

\[
| A_j - A^\infty_j | < \mu(E) / 12,
\]

where

\[
A^\infty_j = \sum_{k=1}^{j-1} (-1)^k \int h^{m_k} d\mu;
\]

that is possible because of (3). Now we consider two cases, namely

(\(\alpha \)) \(| A_{j-1} + B_{j-1} - A^\infty_j | \leq 5 | \mu(E) | / 12, \)

(\(\beta \)) \(| A_{j-1} + B_{j-1} - A^\infty_j | > 5 | \mu(E) | / 12. \)

In the case (\(\alpha \)), we choose \(m_j = m^*_j \), and \(n_j \) large enough \((\geq n^*_j) \) so that \(| B_j | > 11 | \mu(E) | / 12 \); that is possible because of (3) and \(L_3 \). In the case (\(\beta \)), we choose \(n_j = n^*_j \), and \(m_j \) large enough \((\geq m^*_j) \) so that \(| B_j | < | \mu(E) | / 12 \); that is possible because of (2). In each case, we have

\[
| A_{j-1} + B_{j-1} - A_j - B_j | > 3 | \mu(E) | / 12.
\]

Taking \(L_2 \) into account, we have \(| C_{j-1} | \) and \(| C_j | \) majorized by \(| \mu(E) | / 12 \), and therefore

\[
\left| \int f \phi_{n_{j-1}} - \int f \phi_{n_j} \right| > \frac{1}{12} | \mu(E) | .
\]
Therefore the sequence $\int f \phi_n$ is not convergent, against our assumption. The contradiction proves that $d\mu$ is absolutely continuous, that is $l(f) = \int f d\mu = \int f \phi$ whenever $f \in A$, for some $\phi \in L^1$.

Remark. If $\phi_n(t) = \sum_{k=-\infty}^{\infty} a_{n,k} e^{-ikt}$, the assumption of the theorem is the existence of $\lim_{n \to \infty} \sum_{k=0}^{\infty} a_{n,k} b_k$ for all $\sum_{k=0}^{\infty} b_k e^{ikt} \in H^\infty$. The conclusion is $\lim_{n \to \infty} a_{n,k} = \int \phi(\theta) e^{ikt}$ for some $\phi \in L^1$ ($k = 0, 1, 2, \cdots$). Theorem 1 of [1] follows as a particular case.

We are not able to prove that $l(f) = \int f \phi$ for all $f \in H^\infty$. Nevertheless, this holds for many functions in H^∞. Precisely, we have

Theorem 2. Keeping the same notations as in Theorem 1, let D_1 be the set of all $f \in H^\infty$ such that $l(f) = \int f \phi$, and let D be the intersection of the D_1 for all l. Then (a) D_1 is a closed subspace of H^∞ and, given any $f \in H^\infty$, almost all translates of f belong to D_1. (b) D is a closed subalgebra of H^∞, invariant under translation; it contains all $f \in H^\infty$ such that $fg \in D$ for some outer function $g \in D$; in particular, it contains all $f \in H^\infty$ which are continuous on the circle except on a closed set of measure zero.

Proof. We may suppose that the ϕ_n are trigonometric polynomials. By the Banach-Steinhaus theorem, the linear functionals $f \mapsto \int f \phi_n$ are uniformly bounded on A. There exist measures $d\mu_n$, with bounded norms, such that $\int f \phi_n = \int f \, d\mu_n$ for all $f \in A$. By the F. and M. Riesz theorem (or another device) the $d\mu_n$ are absolutely continuous. Therefore we may suppose that the ϕ_n have bounded L^1-norms.

In order to prove (a) we may suppose $\phi = 0$. The fact that D_1 is a closed subspace of H^∞ is obvious. Given $f \in H^\infty$, we write $f_\ast(t) = f(t - s)$. Given $\psi \in L^1$, we have $f_\ast \psi \in A$, and by Theorem 1

$$\lim_{n \to \infty} \int \int \phi_n(t) f(t - s) \psi(s) \, ds \, dt = 0.$$

By assumption

$$\lim_{n \to \infty} \int \phi_n(t) f(t - s) \, dt = l(f_\ast)$$

and since the ϕ_n have bounded L^1-norms, the integrals $\int \phi_n(t) f(t - s) \, dt$ are uniformly bounded with respect to n and s. By the Lebesgue theorem

$$\int l(f_\ast) \psi(s) \, ds = 0$$

and since ψ is an arbitrary function in L^1, $l(f_\ast) = 0$ for almost every s. That proves (a).
In order to prove (β) we write
\[
\lim_{n \to \infty} \int f g \phi_n = l_f(g) = l_\phi(f) = l(fg) \quad (f \in H^\infty, g \in H^\infty),
\]
\[
l_f(g) = \int g \phi_f \quad \text{when } g \in D.
\]

We have $A \subseteq D$ as a reformulation of Theorem 1.
Suppose $f \in A$. Taking $g \in A$, we have $fg \in A$. Since $fg \in D$ and $g \in D$, we have
\[
\int f g \phi = l(fg) = l_f(g) = \int g \phi_f,
\]
and since g is arbitrary in A, $f \phi = \phi_f$ (mod H_0^∞) (meaning that the Fourier coefficients or order ≤ 0 are the same).

Now suppose $g \in D$. Taking $f \in A$ we have
\[
\int g \phi = l(g) = \int g \phi_f = \int f g \phi
\]
since $f \phi = \phi_f$ (mod H_0^∞). Therefore $fg \in D_1$ and, l being arbitrary, $fg \in D$. Since $fg \in D$ and $g \in D$, we have
\[
\int f(g \phi - \phi_\phi) = 0
\]
and since f is arbitrary in A, $g \phi = \phi_\phi$ (mod H_0^∞).

If $f \in D$ and $g \in D$, we still have (6) because $f \phi = \phi_f$ (mod H_0^∞), and $fg \in D$ as a consequence. Therefore D is a subalgebra of H^∞. It is closed because each D_1 is closed, and it is obviously invariant under translation.

Finally, suppose that $f \in H^\infty$, $g \in D$, g is an outer function and $fg \in D$. We still have (4) and (5). Moreover, since D is an algebra, we have
\[
\int g h(f \phi - \phi_f) = 0
\]
for all $h \in D$. Therefore $g(f \phi - \phi_f) = 0$ (mod H_0^∞). Since g is an outer function, it follows that $f \phi = \phi_f$ (mod H_0^∞). As a conclusion
that is, $f \in D_I$, and since l is arbitrary, $f \in D$.

Given a closed set K of measure zero on the circle, there exists a continuous outer function g vanishing on K (that follows immediately from a proof of Fatou's theorem). If f is continuous except on K, $fg \in A$, therefore $f \in D$. That ends the proof of Theorem 2.

Reference