Prime $(-1, 1)$ rings with idempotent
HTML articles powered by AMS MathViewer
- by Nicholas J. Sterling
- Proc. Amer. Math. Soc. 18 (1967), 902-909
- DOI: https://doi.org/10.1090/S0002-9939-1967-0215893-1
- PDF | Request permission
References
- A. A. Albert, On the right alternative algebras, Ann. of Math. (2) 50 (1949), 318–328. MR 28828, DOI 10.2307/1969457
- A. A. Albert, Almost alternative algebras, Portugal. Math. 8 (1949), 23–36. MR 32609
- A. A. Albert, The structure of right alternative algebras, Ann. of Math. (2) 59 (1954), 408–417. MR 61096, DOI 10.2307/1969709 M. M. Humm, On a class of right alternative rings without nilpotent ideals, Ph.D. dissertation, Syracuse Univ., Syracuse, N. Y., 1965.
- Erwin Kleinfeld, Right alternative rings, Proc. Amer. Math. Soc. 4 (1953), 939–944. MR 59888, DOI 10.1090/S0002-9939-1953-0059888-X
- Erwin Kleinfeld, On a class of right alternative rings, Math. Z. 87 (1965), 12–16. MR 170914, DOI 10.1007/BF01109923
- Carl Maneri, Simple $(-1,\,1)$ rings with an idempotent, Proc. Amer. Math. Soc. 14 (1963), 110–117. MR 142596, DOI 10.1090/S0002-9939-1963-0142596-0
- R. L. San Soucie, Right alternative division rings of characteristic two, Proc. Amer. Math. Soc. 6 (1955), 291–296. MR 68526, DOI 10.1090/S0002-9939-1955-0068526-3
- R. L. San Soucie, Weakly standard rings, Amer. J. Math. 79 (1957), 80–86. MR 84496, DOI 10.2307/2372386
- L. A. Skornyakov, Right-alternative fields, Izv. Akad. Nauk SSSR Ser. Mat. 15 (1951), 177–184 (Russian). MR 0040281
Bibliographic Information
- © Copyright 1967 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 18 (1967), 902-909
- MSC: Primary 17.60
- DOI: https://doi.org/10.1090/S0002-9939-1967-0215893-1
- MathSciNet review: 0215893