Tauberian theorems for absolute summability
HTML articles powered by AMS MathViewer
- by J. S. Ratti
- Proc. Amer. Math. Soc. 18 (1967), 775-781
- DOI: https://doi.org/10.1090/S0002-9939-1967-0216202-4
- PDF | Request permission
References
- D. Borwein, An extension of a theorem on the equivalence between absolute Rieszian and absolute Cesàro summability, Proc. Glasgow Math. Assoc. 4 (1959), 81–83 (1959). MR 120490
- K. Chandrasekharan and S. Minakshisundaram, Typical means, Oxford University Press, 1952. MR 0055458
- T. M. Flett, Some generalizations of Tauber’s second theorem, Quart. J. Math. Oxford Ser. (2) 10 (1959), 70–80. MR 130510, DOI 10.1093/qmath/10.1.70
- T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc. (3) 7 (1957), 113–141. MR 86912, DOI 10.1112/plms/s3-7.1.113 J. M. Hyslop, On the absolute summability of series by Rieszian means, Proc. Edinburgh Math. Soc. (2) 5 (1936), 46-54. —, A Tauberian theorem for absolute summability, J. London Math. Soc. 12 (1937), 176-180.
- J. S. Ratti, On high indices theorems, Proc. Amer. Math. Soc. 17 (1966), 1001–1006. MR 199594, DOI 10.1090/S0002-9939-1966-0199594-3
- Daniel Waterman, On some high indices theorems, Trans. Amer. Math. Soc. 69 (1950), 468–478. MR 39102, DOI 10.1090/S0002-9947-1950-0039102-3
- A. Zygmund, On certain integrals, Trans. Amer. Math. Soc. 55 (1944), 170–204. MR 9966, DOI 10.1090/S0002-9947-1944-0009966-5
Bibliographic Information
- © Copyright 1967 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 18 (1967), 775-781
- MSC: Primary 40.42
- DOI: https://doi.org/10.1090/S0002-9939-1967-0216202-4
- MathSciNet review: 0216202