THE SHARPENING OF A RESULT CONCERNING
PRIMITIVE IDEALS OF AN ASSOCIATIVE RING

F. SZÁSZ

The importance of the concept of primitive ideals of associative rings consists in the well-known theorem stating that every semisimple ring A is a subdirect sum of primitive rings B_v, where a ring A is called semisimple (in the sense of Jacobson) if the Jacobson radical, i.e. the intersection of all primitive ideals, coincides with the zero ideal (0), and a ring B_v is called primitive if the ideal (0) is a primitive ideal of B_v. (Cf. N. Jacobson, Structure of rings, Colloq. Publ., Vol. 37, Amer. Math. Soc., Providence, R. I., 1956.)

Some new characterizations were recently given for the Jacobson radical of a ring A. For instance, A. Kertész [3] has shown in these Proceedings (generalizing an observation of L. Fuchs [1]) that the Jacobson radical J of a ring A consists of exactly those elements x of A for which the product yx lies with every $y \in A$ in the Frattini A-submodule of the ring A, as of an A-right module A for itself (cf. also Hille [2]). Furthermore A. Kertész [4] has shown that J is the intersection of all those maximal right ideals R of A for which there must exist, for any element $x \in R$ ($x \in A$), a second element $y \in A$ with $yx \in R$; that is, those right ideals for which $A^{-1}R \subseteq R$ holds, where $X^{-1}R = \{y; y \in A, Xy \subseteq R\}$ for an arbitrary subset X of A. Furthermore, let $L \cdot Y^{-1}$ denote the subset $\{z; z \in A, zY \subseteq L\}$.

Every modular right ideal R of A is quasi-modular in the sense that $A^{-1}R \subseteq R$ holds. The concept of quasi-modularity of right ideals R was introduced in [6]. Solving a problem proposed by Kertész [4] I have shown in [6] the existence of an associative ring which has a quasi-modular maximal but not a modular right ideal. In my other paper [7] a two-sided ideal Q of A is called quasi-primitive if there exists a quasi-modular maximal right ideal R of A with $Q = A^{-1}R \subseteq R$. Obviously every primitive ideal is also quasi-modular in A, and almost trivially every artin ring with (0) quasi-primitive ideal is a total matrix ring over a skew field. Furthermore, any quasi-primitive ideal is clearly a prime ideal, and any commutative ring with (0) quasi-primitive ideal is a field.

Solving a problem of my colleague Dr. Steinfeld, I have proved in [7] that the Jacobson radical J of A must coincide with the intersec-

Received by the editors July 20, 1966.

910
tion of all quasi-primitive ideals. There are two proofs of this fact in [7], an entirely elementary proof without quasi-regular element and irreducible modules, and (in a footnote) a second short proof with quasi-regular elements too.

In my note [7] some open problems on quasi-primitive ideals are mentioned, which have recently been solved completely by Dr. Steinfeld. He has shown that the concepts of primitivity and quasi-primitivity of ideals of arbitrary associative rings must coincide. Using a lemma which is proved but not explicitly announced in [7], Dr. Steinfeld has proved that there exists for every fixed quasi-modular maximal right ideal \(R \) of \(A \) an element \(X \) of \(A \) for which the right ideal quotient \(R_x = \{ x \}^{-1} R \) is a modular maximal right ideal of \(A \) such that \(A^{-1} R = A^{-1} R_x = (xA)^{-1} R \), which means that every quasi-primitive ideal \(Q = A^{-1} R \) is by \(Q = A^{-1} R_x \) also primitive in \(A \).

This result of Dr. Steinfeld can be sharpened as follows:

Theorem. If \(R \) is a quasi-modular maximal right ideal of an arbitrary associative ring, and if \(x \in A \) is an arbitrary element of \(A \) with the condition \(x \in R \), then the quasi-primitive ideal \(Q = A^{-1} R \) coincides with the primitive ideal \(P_x = A^{-1} R_x = (xA)^{-1} R \) of \(A \) (instead of a single \(x \) for any \(x \in R \)).

Proof. In my note [7] it is shown that \(R_x = \{ x \}^{-1} R \) is a modular maximal right ideal of \(A \) for every quasi-modular maximal right ideal \(R \) of \(A \) and for every \(x \in A \) with \(x \in R \). Namely, \(R_x = \{ x \}^{-1} R \) is a right ideal of \(A \). By the quasi-modularity of \(R \), \(A^2 + R = A \), and therefore we obtain \(RA^{-1} = R \); that is, \(xA + R = A \) for any \(x \in R \), \(x \in A \). Since there exists for \(x \in R \) an element \(y \in A \) with \(xy \in R \), the right ideal \(R_x \) has the property \(y \in R_x \), i.e. \(R_x \neq A \). If \(z \in A \) is any element with \(z \in R_x \), one has by \(xz \in R \) obviously \(xzA + R = A \), and thus for any \(b \in A \) the existence of \(a \in A \) and \(r \in R \) with \(xza + r = xb \), and thereby also \(x(b - za) = r \in R \), \(b - za \in R_x \), \(b \in zA + R_x \) and \(A = zA + R_z \), which means the maximality of \(R_z \) in \(A \). Moreover, one has \(xza_1 + r_1 = x \) with some \(a_1 \in A \) and \(r_1 \in R \), which implies \(x(1 - za_1)A \subseteq R \), consequently \((1 - za_1)A \subseteq R_z \) and the modularity of the maximal right ideal \(R_z \) of \(A \).

By \(xA + R = A \) and \(A((xA)^{-1} R) = (xA + R)((xA)^{-1} R) \subseteq R \) one has on one side \((xA)^{-1} R \subseteq A^{-1} R \). On the other hand the condition \(y \in A^{-1} R \) implies by \(A^{-1} R = (xA + R)^{-1} R \) obviously \(xAy \subseteq R \), that is \(y \in (xA)^{-1} R \), and thus holds \(A^{-1} R = (xA)^{-1} R \) for every \(x \in R \) (\(x \in A \)). But one has almost trivially \((xA)^{-1} R = A^{-1} \{ x \}^{-1} R = A^{-1} R_x \) too, which means that \(Q = A^{-1} R = (xA)^{-1} R \) and \(P_x = A^{-1} R_x \) must be for every \(x \in R \) the same primitive ideals of \(A \). Q.E.D.
References

