Remarks on some convergence conditions for continued fractions
HTML articles powered by AMS MathViewer
- by David F. Dawson
- Proc. Amer. Math. Soc. 18 (1967), 803-805
- DOI: https://doi.org/10.1090/S0002-9939-1967-0225038-X
- PDF | Request permission
References
- David F. Dawson, Concerning convergence of continued fractions, Proc. Amer. Math. Soc. 11 (1960), 640–647. MR 117468, DOI 10.1090/S0002-9939-1960-0117468-5
- David F. Dawson, Convergence of continued fractions of Stieltjes type, Proc. Amer. Math. Soc. 10 (1959), 12–17. MR 104080, DOI 10.1090/S0002-9939-1959-0104080-9
- David F. Dawson, A theorem on continued fractions and the fundamental inequalities, Proc. Amer. Math. Soc. 13 (1962), 698–701. MR 150498, DOI 10.1090/S0002-9939-1962-0150498-8
- João Farinha, Sur la convergence de $\Phi a_i/1$, Portugal. Math. 13 (1954), 145–148 (French). MR 68652
- Walter Leighton, A test-ratio test for continued fractions, Bull. Amer. Math. Soc. 45 (1939), no. 2, 97–100. MR 1563919, DOI 10.1090/S0002-9904-1939-06905-X
- W. T. Scott and H. S. Wall, A convergence theorem for continued fractions, Trans. Amer. Math. Soc. 47 (1940), 155–172. MR 1320, DOI 10.1090/S0002-9947-1940-0001320-1
Bibliographic Information
- © Copyright 1967 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 18 (1967), 803-805
- MSC: Primary 40.12
- DOI: https://doi.org/10.1090/S0002-9939-1967-0225038-X
- MathSciNet review: 0225038