COMMUTATIVE RINGS OVER WHICH EVERY
MODULE HAS A MAXIMAL SUBMODULE

ROSS M. HAMSHER!

In this note we characterize those commutative rings over which
every nonzero module has a maximal submodule. Professor Hyman
Bass in [1, p. 470] states the following conjecture: a ring R is left
perfect if, and only if, every nonzero left R-module has a maximal
submodule, and R has no infinite set of orthogonal idempotents. For
commutative rings we also show that Bass’ conjecture is true.

Throughout, R will be a ring with identity, J will denote the
Jacobson radical of R, and .S will denote the ring R/J. We use the
word module to mean unital module. If M is a left R-module, rad M
denotes the radical of M, that is, the intersection of the maximal sub-
modules of M. If m& M, then z(0: m) = {rER: rm=0}.

A left ideal L in R is left T-nilpotent if for each sequence {r;}f_l
in L, there is some positive integer k& with r, - - - 7,=0. A submodule
B of an R-module M is small in M if B4+ M'= M where M’ is a sub-
module of M implies that M'= M.

The first lemma occurs as a remark in [1, p. 470].

LemMA 1. Every nonzero left R-module has a maximal submodule=J
is left T-nilpotent, and every nonzero left S-module has a maximal sub-
module.

Proor. (=) Clearly every nonzero left .S-module has a maximal
submodule if every nonzero left R-module has a maximal submodule.
Suppose that B is a nonzero left R-module, and 4 is a submodule of
B with A+4rad B=B. If A#B, then by our hypothesis B/4 has a
maximal submodule, that is, there exists a maximal submodule 4 of
B which contains 4. Since by definition rad BC 4, we have that
A+rad B=B(CA4, a contradiction. Thus 4 =B, and we have shown
that for each left R-module B, rad B is small in B.

Now let {j.}f,l be a sequence of elements in J. If F is the free
R-module with basis {xi}{‘;l, and F’ is the submodule of F generated
by {xi —Ji%it };‘;1, then since rad F=JF, and consequently F'+4rad F
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= F, we must have that F/=F. Thus there exist 7, - - -, 7,&R with

21 = D2 ri(® — jiwir)

=1

= rix; + { 2 (ri— 1 ji—l)xi} — Tnfn%nir.
=2

By the independence of the x;’s, r1=1, r;=r;_1j;y for =2, - - - | n,

and 7,j,=0. Now ry=riji=7. In general if r,=3 - - - jr_1 where

2<k<mn, then ra=rijx=j - - - jx- By this process we find that

Tn=j1 ** * Jju1, and j1 - - - ju =7,5,=0. This shows that J is left

T-nilpotent.

(&) Now assume that J is left T-nilpotent, and that every nonzero
left S-module has a maximal submodule. Let M be a nonzero left
R-module, and assume that JM = M. Suppose that jm=0 for j&J
and m& M. Then since m = Z}',lj,mi where j,&EJ and m;& M, there
is a subscript & with jjum; 0. Now since JM #0, there are elements
HEJT and myE M with jim;#0. By the above argument we can pro-
duce elements /& J and m.& M with jijame#0. By induction, there
exists a sequence {j;};, in J and a sequence {m:}, in M with
1+ - - %0 for k=1, 2, - - - . This contradicts the fact that J is
left T-nilpotent, and hence for a nonzero module M, JM# M. Thus
M/JM, a nonzero left S-module, has a maximal submodule, and so
must M. This completes the proof of Lemma 1.

ReEMARK. Lemma 1 admits the following generalization: every
nonzero left R-module has a maximal submodule < for each
left R-module M, each sequence of homomorphisms {¢i},°f,l in
Homg (M, rad M), and each m&E M, there is a positive integer £ with

(m)¢y - - - ¢=0. The implication (&) is trivial since if there is a
nonzero left R-module M such that M =rad M, then taking ¢; to be
the identity map of M to itself for ¢=1, 2, - - -, for any nonzero

mEM, (m)py - - - ¢x5=0 for each positive integer k. Thus for a non-
zero left R-module M, M>rad M. For the reverse implication (=)
let M, a left R-module, and {dn}f;l in Homg(M, rad M) be given.

Then letting M;=M for i=1, 2, - - -, form the direct system of
R-modules {M;}Z_l with homomorphisms ¢;: M;—M,;,. Let L be the
direct limit, and fori=1,2, - - -, lety;: M;—L be the induced homo-

morphism. If 4 is a maximal submodule of L, and (M,)¢:Q 4, then
{Af\(Mi+1)\,bi+1}¢;L11 is a maximal submodule of M,;; which does
does not contain (M;)¢;, a contradiction. Thus L has no maximal sub-
module. We conclude that L=0 which implies that given m& M
there is a positive integer k with (m)¢; - - - ¢r=0.
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LeEmMMA 2. If R is commutative, and every nonzero R-module has a
maximal submodule, then every element of R which is not a zero divisor
is @ unit.

Proor. Let x be an element of R which is not a zero divisor. Let
A=) ®Ry; where Ry,~R/Rxi, that is, (0: y;) =Rx% and let
B=3.\R(xyu1—y). Then A/B=73 2, Ry; where j;=y;+B. Sup-
pose that A # B; then by hypothesis 4/B has a maximal submodule
M. If 3. M, then there exist &R and m&E M such that r§,+m
= jan. But, using the commutativity of R, we then have §,=x"9,,
=rx"y,+x"m=x"m& M, a contradiction. Hence %,EM for
n=1, 2, .-, and M=A4/B. This contradiction shows that 4 =B
so there are 7y, - - -, 7, &R with

n

»n = Z ri(®yir1 — ¥3)

1=1

n

—ron+ {Z (i1 — r,-)ye} + 7alYni1e

=2

I

Since the y.’s are independent, y1= —ry1, 7;_1x—7;Eg(0: y;) = Rx¢
fori=2, - .., n, and 7.xE(0: ¥,11) = Rx"*1. Since r,x & Rx"*+!, and
x is not a zero divisor, 7, & Rx". Suppose that 7,& Rx* where 2 <k =<n.
Since 7;_1x—7,ERx*, r,_1xERx*. As x is not a zero divisor, 7y
& Rx*~1. This finite induction shows that 77& Rx. Then y1= —ry;,=0
so R/Rx =~ Ry, =0. Hence x is a unit.

THEOREM. Let R be a commutative ring. Then every nonzero R-module
has a maximal submodule=J s T-nilpotent, and S is a (von Neu-
mann-) regular ring.

Proor. (<) To demonstrate this implication, it suffices by Lemma
1 to show that every nonzero S-module has a maximal submodule.
Since S is regular and commutative, by a result of Professor Irving
Kaplansky [5, Theorem 6, p. 380] every simple S-module is injective.
Let M be a nonzero S-module, and let m& M, m=0. Since Sm is
cyclic, there is an epimorphism ¥ from Sm to a simple S-module 4.
If 4: Sm— M is the identity injection, then there is a homomorphism
¢: M—A with ip=y. Thus ¢ is an epimorphism, and Ker ¢ is a maxi-
mal submodule of M.

(=) By Lemma 1 J is left T-nilpotent, and every nonzero S-module
has a maximal submodule. Let a €S, a50. Since .S is commutative
and has no nilpotent ideals, SeMs(0: @) =0. Let $=5/5(0: @), and
for s&€S let 5=5+5(0: a). If 56=0, then sa€SaMg(0: a)=0 so
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sE5(0: @), and 5=0. Thus a is an element of S which is not a zero
divisor. Since § is commutative, and every nonzero S-module has a
maximal submodule, by Lemma 2 Si=S, and we then have that
Sa®s(0: a) =S. This shows that every principal ideal of S is a direct
summand of S so S is regular.

COROLLARY. A commutative ring R is perfect < every nonzero R-
module has a maximal submodule, and R has no infinite set of orthogonal
idempotents.

Proor. (=) This follows from the results in [1].

(&) The theorem states that J is T-nilpotent, and R/J is regular.
Since R is an SBI-ring [3, Proposition 3, p. 54 and Remark, p. 55],
countable sets of orthogonal idempotents in R/J lift orthogonally
to R. Thus R/J has no infinite set of orthogonal idempotents, and
hence R/J is semisimple artin. By [1, Theorem P, p. 467] R is
perfect.

No internal characterization of rings all of whose nonzero left
modules have maximal submodules is known. Lemma 1 reduces this
problem to the case of semisimple rings. In this connection consider
the following three properties on a ring R: (i) R is semisimple, and
every nonzero left R-module has a maximal submodule; (ii) every
simple left R-module is injective; and (iii) R is (von Neumann-)
regular. By Professor Kaplansky's result [5, Theorem 6, p. 380] and
the theorem, for commutative rings (i)<(ii)<(iii). In general the
status of only two of the six possible implications is known. (ii) is
equivalent to the condition that every left R-module has zero radical,
so in general (ii)=(i).

In [4] it is shown that if N is a transfinite cardinal number, and if
Vr is an N-dimensional vector space over a field F whose cardinality
does not exceed 28, then L, the full ring of linear transformations on
Vr, is regular but possesses both right and left simple modules which
are not injective. Thus (iii) does not imply (ii). It would be interesting
to know, and is an open question, whether over a ring L as above,
there is a nonzero right or left Z-module which has no maximal sub-
module.

In [2] it is shown that if R is a commutative, noetherian ring, then
every nonzero R-module has a maximal submodule if, and only if,
R is a test module for projectivity. The results here do not seem to
shed any new light on the relationship of the two conditions for com-
mutative rings.

REFERENCES

1. H. Bass, Finitistic dimension and a homological gemeralization of semiprimary
rings, Trans. Amer. Math. Soc. 95 (1960), 466-488.



1967 COMMUTATIVE RINGS 1137

2. R. Hamsher, Commutative, noetherian rings over which every module has a
maximal submodule, Proc. Amer. Math. Soc. 17 (1966), 1471-1472.

3. N. Jacobson, Structure of rings, Collogq. Publ. Vol. 37, Amer. Math. Soc.,
Providence, R. 1., 1956.

4. B. Osofsky, Cyclic injective modules of full linear rings, Proc. Amer. Math.
Soc. 17 (1966), 247-253.

S. A. Rosenberg and D. Zelinsky, Finiteness of the injective hull, Math. Z. 70
(1959), 372-380.

RuTGERS, THE STATE UNIVERSITY



