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1. Introduction. The main purpose of this paper is to prove for

complete barrelled spaces a stability theorem, which is essentially a

generalization of a stability theorem for Banach spaces obtained by

B. E. Veic in [8].

Theorem. Let E be a complete barrelled Hausdorff space with a

Schauder basis {xk} bounded away from zero. If {yk} is an co-indepen-

dent sequence in E such that the series y,r_ i yk—Xk converges uncondi-

tionally then {yk} is a Schauder basis for E equivalent to the basis {x^.

In the process of demonstrating this theorem we obtain some

results which are of independent interest. Proposition 2, a generaliza-

tion of Veic's Banach space result [8], and Proposition 1 contain

results which are not needed for the proof of the Theorem.

For the most part we shall follow the terminology of J. L. Kelley

and I. Namioka in [5]. A barrel in a linear topological space is a set

which is closed, convex, circled, and radial at zero. Banach spaces

and Frechet spaces (complete metrizable locally convex spaces) are

special cases of barrelled spaces; i.e., locally convex spaces in which

each barrel is a neighborhood of zero.

In a complete locally convex space £ a family £ of continuous

linear functionals on £ is uniformly bounded on bounded subsets of

£ provided that £ is pointwise bounded; in other words, weak*

bounded subsets of E* are strongly bounded [5, p. 170]. A stronger

property characterizes barrelled spaces; a locally convex space £ is

barrelled if and only if a family £ of continuous linear functionals on

£ is equicontinuous provided that it is pointwise bounded ([3, the

Barrel Theorem]; [5]). That is, £ is barrelled if and only if weak*

bounded subsets of £* are equicontinuous.

2. In this section we will prove three seemingly unrelated proposi-

tions which will be needed for the proof of the theorem.

A basis in a linear topological space £ is a sequence {xk} in £ such

that each element x££ has a unique representation x= yir.i atXt.

The linear functionals {fk} defined by fk(x) =ak are called the coeffi-
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cient functionals. When the coefficient functionals are continuous

we call {xk} a Schauder basis. If a Banach space has a basis {xk}

such that ||x*|| =1 for each positive integer k, then the set of coeffi-

cient functionals is bounded (and equicontinuous). What can be

said about the coefficient functionals in more general spaces with

bases under similar conditions? The following proposition gives an

answer.

Proposition 1. Let E be a linear topological space with a Schauder

basis {xk}. Then each of the following statements holds.

(a) // {xk} is bounded away from zero then the family of coefficient

functionals {fk} is weak* convergent to zero and therefore weak* bounded.

(b) If E is a complete locally convex space and {xk} is bounded away

from zero then {fk} is strongly bounded.

(c) If E is a barrelled space then {xk} is bounded away from zero if

and only if {fk} is equicontinuous.

Proof. Since {xk} is a basis, the sequence {fk(x)xk} converges to0

for each xEE. Thus, since jx*} is bounded away from zero (i.e. d is

not a cluster point of {x^}) the sequence {fk(x)} must converge to 0,

proving (a), (b) and the "only if" part of (c) follow immediately from

(a) and the remarks made in the introduction. The proof of the "if"

part of (c) is trivial and does not depend upon E being barrelled.

Let {yk} be a sequence in a locally convex space E. The series

Ei°=i Jk 1S said to converge unconditionally to an element y of E if

for every permutation p of the positive integers the series ^j*Li yPm

converges (in the usual sense) to y. T. H. Hildebrandt [4] proved

that this is equivalent to unordered convergence which is defined in

the following way. Let 5 be the collection of finite subsets of the posi-

tive integers, ordered by D. Then ^k=xyk is unordered convergent

to y, if the net { $^*e<r yk: aES} converges to y. It follows that if U is

a neighborhood of zero, there is an integer N such that E*e" J^ U,

whenever aES and inf a^N. E*°-i y* is subseries convergent if for

each subsequence {ykn} of {yk}, the series ^2^xykn is convergent.

Subseries convergence is stronger than unconditional convergence

but the two are equivalent in sequentially complete locally convex

spaces.2

If A is a subset of E* then the polar of A (written A0) in E is the

set {xG-E: |/(*)| =1 f°r alI/G-4}. An important fact which is used

in the next proposition is the following. The topology of a locally con-

vex space E is the topology of uniform convergence on equicontinuous

2 For a more complete discussion see [2].
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subsets of £*; in other words {AQ; A is an equicontinuous subset

of £*} forms a local base for £. Define a to be the set of sequences

{a,) such that an= ±1 lor each n, and define e to be the set of all

complex sequences {e„} such that | e„ | 5£ 1 for each n.

Proposition 2. Let {yk} be a sequence in a complete locally convex

Hausdorff space E. The following statements are equivalent.

(1) The series £j°_i yk converges unconditionally.

(2) For any equicontinuous subset A of £*, the series £i0=i|/(y*)|

converges uniformly with respect tofEA.

(3) The series £t°=i e*y* converges uniformly with respect to {ek} Ee.

(4) The series ££-i a*y* converges uniformly with respect to {ak} Ea.

Proof. The scheme of the proof is as follows: (1)—>(2), (2)—»(3),

(3)->(4), (4)-K2), and (3)-+(l). C. W. McArthur has shown directly

that (1)<-K2) in [6]. The implication (3)->(4) is trivial, and (3)->(l)

is trivial since unconditional convergence is equivalent to subseries

convergence in complete locally convex spaces.

(1)—>(2). We shall use the following property of complex numbers.

If {zk} is a sequence of complex numbers and | £*<=„ zk\ <M lor all

aES with inf a^N, then £"=#| z*| =HM. Let A be an equicontinu-

ous subset of £* and e a positive number. There is a neighborhood of

zero U of £ such that |/(x)| <«/5 for all xEU and fEA. Since

y.r.i Xk converges unconditionally there is an integer N such that

if aES and inf a^N then £tG<r xkEU. Therefore |/(£te<,xft)|

= | zZi^'f(xk)\ <«/5 for all fEA. It follows from the above remark

on complex sequences that £r=]v|/7;*)| <e for all fEA. Thus

zZi~i\f(xh)\ converges uniformly for/£A

(2)—>(3). Let A be an equicontinuous subset of £*. Since

£t'=i|/(3'*)| converges uniformly for/£^4, there is an N such that

lorn>m^N, z2l-m\f(y*)\ <1 for all fEA. Now if {ek}Ee and fEA

we have \fzZl-mWk\ ^ £2-1 «*| • |/(y*)| ^ £2-»|/0y*)| <L Thus
for n>m^N, and any sequence {ek} in e, £j=m tkVkEAo- Since £ is

complete (3) is proved.

(4)—»(2). Using again the fact that the topology of £ is the topol-

ogy of uniform convergence on equicontinuous sets, and observing

that for each complex number /, | Re #| ^ 11\ and | Im t\ ±*\t\ we see

that (4) implies: for each equicontinuous subset B of £*, £a* Refiyk)

and £a4 Im fiyk) converge uniformly for {ak}Ea and fEB. Let €

be positive and A equicontinuous and pick Af large enough so that

n>m^N implies | £^_ma4 Re/(y*)| tit/2 and | £2_m a* Im f(yk)\

Sse/2 for any {ak} Ea and /E.4. Now let fEA and define the se-

quences {bk} and {c*} of a by | Re/(yA-)| =bk Re/(y*) and | Im/(y*)|
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= ck I m f(yk). Then for n > m ^ N we have

E I/Ml   g E |Re/(y4)|   +   I W(y*) |
k=m k=m

n n

= E ** Re/Cyt) + E ck Im/(y,) < e.
&=m k=m

This completes the proof of the proposition.

A subset C of a linear topological space E is said to be relatively

compact if it has compact closure. C is relatively compact if and only

if each net in C has a cluster point in E. A linear operator T: E-^F is

called totally bounded if it maps bounded sets to totally bounded

sets; compact if it maps bounded sets to relatively compact sets; and

completely continuous if it maps a neighborhood of zero to a rela-

tively compact set. If F is a complete locally convex space the first

two operators are equivalent. If £ is a normed space, the second two

are equivalent. Thus the three types of operators are equivalent

whenever both E and F are Banach spaces. In the general theory the

strongest type, complete continuity, seems to be the most useful.

We have the following proposition which implies a well-known prop-

erty of compact operators in Banach spaces.

Proposition 3. Let T, Tx, T2, ■ ■ ■ , be linear operators on a linear

topological space E to a complete locally convex space F such that { Tn}

converges to T uniformly on a neighborhood of zero V of E. If for each

integer n, Tn(V) is totally bounded then T is completely continuous.

Proof. In a complete locally convex space a set is totally bounded

if and only if it is relatively compact; hence we need only show that

T( V) is totally bounded. The proof is straightforward and is omitted.

3. Two bases {xk} and {yk} are said to be equivalent if for each

sequence of scalars {ak}, JZ^, x akxk converges if and only if E"-1 a*y*

converges. A sequence {yk} is w-independent if the equation

E"-ia*>'* = ^ implies ak = 0 for each integer k.

Theorem. Let E be a complete barrelled Hausdorff space with a

Schauder basis {xk} which is bounded away from zero. If \yk) is an

^-independent sequence in E such that the series E** i Cy* — Xk> converges

unconditionally then {yk} is a Schauder basis for E equivalent to the

basis {xk}.

The proof depends upon several lemmas, the first three of which

assume the hypothesis of the theorem. Let {/*} be the sequence of

coefficient functionals associated with the basis {xk} of the Theorem.
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Lemma 1. There is a neighborhood of zero V in E such that the series

E"=i/*(x)Cy* — x*) converges uniformly for xEV (and thus pointwise

everywhere).

Proof. By Proposition 1, {fk} is equicontinuous so there exists a

neighborhood of zero V in E such that |/i(x)| <1 for all xE V. Ii A

is an equicontinuous subset of E*, then by Proposition 2 ((a)—>(b))

there is a positive integer A(^4) such that E*=m| gijk — x«)| <1 for

n>m^N and all gEA. For xE V we have

g( E/*(*)Cy* - **)) ̂  E I/*(*) I • I gijk - **) I
\ k=m /  I &=m

n

^ E I g(yt -xk)\ < 1.

Thus we have proved that for an equicontinuous subset A oi E* there

is an integer N(A) such that if n>m^N then

n

E-AfaXy* — xk) E A0        for all jG^.

Thus since E is complete we have proved that  Et^i/tC^Ky*-xk)

converges uniformly for xEV.

Lemma 2. For each positive integer n, define the linear operator T„

by Tn(x)= '50tt.xfk(x)(yk — xk). If V is the neighborhood of Lemma 1
then Tn(V) is relatively compact for each n.

Proof. Since the range of each Tn is finite dimensional it suffices

to show that Tn( V) is bounded. Let U be a neighborhood of zero in E

and W a circled neighborhood of zero such that W+W+ • • ■

+ WE U, where there are n W's. For each integer k in [l;n] there is a

scalar ak such that yk—xkEakW. If xG V then fk(x)(yk — xk)EakW

because akW is circled. Therefore if xG V we have

n n

Tnix) = E/*(*)(y* -Xk)EY, akW E bU.
k=l 4-1

where b = max {| ax \, ■ • ■ , \ a„ | }.

From Proposition 3, Lemma 1, and Lemma 2 we have the following.

Lemma 3. The linear operator T defined by T(x) = ~^k=xfk(x)(yk — xk)

is completely continuous.

We state one more lemma which is a result of the abstract Riesz

theory of completely continuous operators (see [7, sections 76-80],

or more concisely [5, p. 207]).
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Lemma 4. Let T be a completely continuous operator on a linear topo-

logical Hausdorff space E, and I the identity map on E. If X is not an

eigenvalue of T then the operator T—XI is a topological isomorphism of

E onto E.

Proof of the Theorem. We may define a linear operator S on £ by

oo oo oo

Six) = £/*(x)y* = £/*(*) Cy* — xk) + £/*(x)x* = r(x) + x.
*-l *=1 *-l

If / is the identity operator on E then we have that S=T+I. The

sequence {yk} is w-independent so S(x) = £t°=i/*7:)3'*=:0 implies

that x = 0. We may write S=T— ( —1)1 and so it is clear that X= — 1

is not an eigenvalue for T. From Lemma 4 it follows that S(x)

— ̂ li=ifk(x)yk is a topological isomorphism of £ onto £ and thus

{yk} is a basis equivalent to {xk}. If {gk} is the family of coefficient

functionals for {yk} then it is clear that g*=/* o S"1 and hence {yk}

is a Schauder basis.

We make one last remark. An evaluable space (quasi-barrelled

space) is a locally convex space £ such that the canonical mapping

from £ to £** is continuous. Every barrelled space is evaluable. In

the statement of the theorem the word "barrelled" can be replaced by

"evaluable" since it is true that a space is complete and barrelled if

and only if it is complete and evaluable.
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