Various types of norm-determining manifolds
HTML articles powered by AMS MathViewer
- by B. E. Wilder
- Proc. Amer. Math. Soc. 18 (1967), 1014-1019
- DOI: https://doi.org/10.1090/S0002-9939-1967-0217572-3
- PDF | Request permission
References
- Errett Bishop and R. R. Phelps, A proof that every Banach space is subreflexive, Bull. Amer. Math. Soc. 67 (1961), 97–98. MR 123174, DOI 10.1090/S0002-9904-1961-10514-4
- Mahlon M. Day, Strict convexity and smoothness of normed spaces, Trans. Amer. Math. Soc. 78 (1955), 516–528. MR 67351, DOI 10.1090/S0002-9947-1955-0067351-1
- J. Dixmier, Sur un théorème de Banach, Duke Math. J. 15 (1948), 1057–1071 (French). MR 27440
- A. F. Ruston, Conjugate Banach spaces, Proc. Cambridge Philos. Soc. 53 (1957), 576–580. MR 90018, DOI 10.1017/s030500410003262x
- Albert Wilansky, Functional analysis, Blaisdell Publishing Co. [Ginn and Co.], New York-Toronto-London, 1964. MR 0170186
Bibliographic Information
- © Copyright 1967 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 18 (1967), 1014-1019
- MSC: Primary 46.10
- DOI: https://doi.org/10.1090/S0002-9939-1967-0217572-3
- MathSciNet review: 0217572