On strong Riesz summability factors of infinite series. I
HTML articles powered by AMS MathViewer
- by J. S. Ratti
- Proc. Amer. Math. Soc. 18 (1967), 959-966
- DOI: https://doi.org/10.1090/S0002-9939-1967-0218783-3
- PDF | Request permission
References
- D. Borwein and B. L. R. Shawyer, On strong Riesz summability factors, J. London Math. Soc. 40 (1965), 111–126. MR 173885, DOI 10.1112/jlms/s1-40.1.111 G. H. Hardy, The second theorem of consistency for summable series, Proc. London Math. Soc. (2) 15 (1916), 72-78. G. H. Hardy and M. Riesz, The general theory of Dirichlet’s series, Cambridge Tracts in Math., No. 18, Cambridge Univ. Press, England. K. A. Hirst, On the second theorem of consistency in the theory of summability by typical means, Proc. London Math. Soc. (2) 33 (1932), 353-366.
- Pramila Srivastava, On strong Rieszian summability of infinite series, Proc. Nat. Inst. Sci. India Part A 23 (1957), 58–71. MR 96057
- Pramila Srivastava, On the second theorem of consistency for strong Riesz summability, Indian J. Math. 1 (1958), no. 1, 1–16 (1958). MR 106373
- J. B. Tatchell, A theorem on absolute Riesz summability, J. London Math. Soc. 29 (1954), 49–59. MR 57993, DOI 10.1112/jlms/s1-29.1.49 C. J. de la Vallé-Poussin, Cours d’analyse infinitésimale, Louvain, Paris, 1923.
Bibliographic Information
- © Copyright 1967 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 18 (1967), 959-966
- MSC: Primary 40.30
- DOI: https://doi.org/10.1090/S0002-9939-1967-0218783-3
- MathSciNet review: 0218783