A REMARK ON THE BROWN-CASLER
MAPPING THEOREM

D. A. MORAN

The Brown-Casler Mapping Theorem [1] states that an arbitrary closed topological manifold \(M^n \) can be realized as the image of a map \(\phi: I^n \rightarrow M \) such that \(\phi|\mathring{I}^n \) is a homeomorphism, \(\phi^{-1}\phi(I^n) = \mathring{I}^n \), and \(\dim \phi(I^n) \leq n - 1 \). Of course, each such map gives a standard decomposition of \(M \) (in the sense of Doyle and Hocking [2]) into an open \(n \)-cell and a residual set. Let us call a subset \(R \subseteq M \) strongly residual if it can be realized as \(\phi(I^n) \) for some map \(\phi \) satisfying the Brown-Casler criteria.

Proposition. Suppose \(R_1 \) and \(R_2 \) are strongly residual in the same manifold \(M^n \). Then \(R_1 \) and \(R_2 \) are of the same homotopy type.

Proof. Let \(\phi_i \) be the Brown-Casler map corresponding to \(R_i \) \((i = 1, 2)\). Remove a point \(p \) from \(I^n \), and let \(\Psi: I^n \setminus \{p\} \rightarrow I^n \) be a strong deformation retraction of \(I^n \setminus \{p\} \) onto \(I^n \). Then \(\phi_i \circ \Psi \circ \phi_i^{-1} \) is a strong deformation retraction of \(M^n \setminus \phi_i(p) \) onto \(R_i \). Since \(M^n \setminus \phi_1(p) \) is homeomorphic with \(M^n \setminus \phi_2(p) \), it follows that \(R_1 \simeq R_2 \), completing the proof.

A routine calculation now results in the

Corollary. Let \(A \) and \(B \) be strongly residual in \(K^k \) and \(M^m \), respectively. If \(C \) is strongly residual in \(K^k \times M^m \), then \(C \simeq A \times M^m \cup K^k \times B \). In particular, a strongly residual subset of \(S^k \times S^m \) is of the same homotopy type as \(S^k \setminus S^m \).

The author has thus far been unable to make significant progress toward classification of strongly residual sets, nor toward determining which Doyle-Hocking residual sets are strongly residual. However, it has been pointed out by several of his colleagues that the proof of the above proposition implies: each strongly residual set is a compact ANR.

References

Michigan State University

Received by the editors August 25, 1966.