ON MINIMAL SEPARATING COLLECTIONS

BEZALEL PELEG

1. Introduction. Minimal separating collections were introduced in [2, §8]; their knowledge is useful for the computation of the kernel of a cooperative game. In this note we determine an exact bound on the maximum number of sets which a minimal separating collection can have. The proof makes use of a result on finite graphs, which is proved in the next section.

2. Minimally ordered graphs. Throughout this paper we deal only with directed graphs. Our terminology is that of [1]. We recall some definitions that pertain to our work. A finite graph G is a pair (X, Γ), where X is a finite set and Γ is a multivalued function mapping X into X, i.e., for each $x \in X$, $\Gamma(x)$ is a subset of X. Let $G = (X, \Gamma)$ be a finite graph. An element x of X is called a vertex. The number of vertices of X is denoted by n. An ordered pair of vertices (x, y) with $y \in \Gamma(x)$ is an arc. A path is a sequence of vertices $\mu = [x_1, \ldots, x_{k+1}]$ such that $x_{i+1} \in \Gamma(x_i)$ for $i = 1, \ldots, k$. Let $\mu = [x_1, \ldots, x_{k+1}]$ be a path. μ is a circuit if $x_1 = x_{k+1}$; if, in addition, $x_j \neq x_i$ for $i \neq j$, $1 \leq i, j \leq k$, then μ is an elementary circuit. G is strongly connected if for every ordered pair of distinct vertices x and y there exists a path $\mu = [x, a_1, \ldots, a_{k-1}, y]$. A partial graph G' of G is a graph (X, Γ'), where $\Gamma'(x) \subseteq \Gamma(x)$ for every $x \in X$; G' is a proper partial graph of G if there exists a vertex y such that $\Gamma'(y)$ is a proper subset of $\Gamma(y)$. Let A be a subset of X. The subgraph of G determined by A is the graph (A, Γ_A) where $\Gamma_A(a) = \Gamma(a) \cap A$, for all $a \in A$. An s-graph is a set Y together with a collection U of ordered pairs of members of Y; U may contain the same ordered pair as many as s times. Clearly a 1-graph is a graph. The shrinkage of A is the s-graph obtained from G by deleting the arcs of the subgraph (A, Γ_A), and by identifying all the vertices of A. The number of members of A is denoted by $|A|$. Let x and y be vertices of G. We write $x \leq y$ if $x = y$ or if there exists a path $\mu = [x, a_1, \ldots, a_{k-1}, y]$. The relation \geq is the weak ordering associated with G. We write $x < y$ if $x \leq y$ but not $x \geq y$; we write $x \equiv y$ if $x \leq y$ and $y \leq x$. The relation \equiv is the equivalence relation derived from \leq.

Received by the editors October 1, 1966.

The research described in this paper was partially supported by the United States Office of Naval Research, under Contract No. N62558-4355, Task No. NR 047-045. Reproduction in whole or in part is permitted for any purpose of the United States Government.
Definition 2.1. A finite graph G is minimally ordered if it has no proper partial graph which defines the same weak ordering on the vertices of G as G.

Clearly a minimally ordered strongly connected graph is minimally connected [1, p. 123].

Lemma 2.2. A subgraph of a minimally ordered graph is minimally ordered.

The proof, which is straightforward, is omitted.

Lemma 2.3. Let G be a minimally ordered graph and let $A \subseteq X$ determine a strongly connected subgraph; the shrinkage of A leads to a minimally ordered graph.

The proof, which is similar to the proof of Theorem 1 [1, p. 123], is omitted.

Lemma 2.4. A minimally connected graph G has at most $2(n-1)$ arcs.

Proof. The proof is by induction on n. For $n=1$ the lemma is true. Let G be a minimally connected graph with n vertices, $n \geq 2$. G contains an elementary circuit μ with l vertices, $l \geq 2$. By Theorem 1 [1, p. 123], the shrinkage of μ leads to a minimally connected graph G'. G' has $n-l+1$ vertices. Since $n-l+1 < n$, G' has, by assumption, no more than $2(n-l)$ arcs. By Theorem 2 [1, p. 124] G has at most $2(n-l)+l=2n-l \leq 2n-2$ arcs.

Example 2.5. Let X be a set with n members, $n \geq 1$, and let $a \in X$. Define $\Gamma(a)=X-\{a\}$ and $\Gamma(x)=\{a\}$, for $x \in X-\{a\}$. (X, Γ) is a minimally connected graph with $2(n-1)$ arcs.

Lemma 2.6. A minimally ordered graph without circuits has at most $f(n)$ arcs, where $f(n)=\frac{1}{4}n^2$ if n is even, and $f(n)=\frac{1}{4}(n^2-1)$ if n is odd.

Proof. The proof is by induction on n. For $n=1$ the lemma is true. Let $G=(X, \Gamma)$ be a minimally ordered graph without circuits with n vertices. We shall assume that n is even. The proof for odd n is similar. Let a be a minimal vertex of G, i.e., there exists no $x \in X$ such that $a>x$. Let $T=\{b \mid b>a \text{ and there exists no } c \text{ such that } b>c>a\}$. We remark that $x \in \Gamma(a)$ if and only if $x \in T$. If $|T| \leq \frac{1}{2}n$ let $X_1=X-\{a\}$. If $|T| > \frac{1}{2}n$ let $b \in T$ and $X_1=X-\{b\}$. We remark that the number of arcs incident into or out from b is less than $\frac{1}{2}n$, since if $b_1 \in T$ then neither $b_1>b$ nor $b>b_1$. By Lemma 2.2 the subgraph determined by X_1 is minimally ordered; since it has no circuits it has, by assumption, at most $f(n-1)$ arcs. Hence G has no more than $f(n-1)+\frac{1}{2}n=f(n)$ arcs.
Example 2.7. Let \(X \) be a set with \(n \) members, \(n \geq 1 \). Let \(A \subseteq X \) have \(\frac{1}{2}n \) members if \(n \) is even, and \(\frac{1}{2}(n+1) \) members if \(n \) is odd. Let \(\Gamma(a) = X - A \), for \(a \in A \). \((X, \Gamma) \) is a minimally ordered graph without circuits which has \(f(n) \) arcs.

Lemma 2.8. A minimally ordered graph \(G = (X, \Gamma) \) has at most \(g(n) \) arcs, where \(g(n) = \max(2(n-1), f(n)) \).

Proof. Let \(X_1, \ldots, X_k \) be the equivalence classes determined by the equivalence relation derived from the weak ordering associated with \(G \). By Lemma 2.2, for \(i = 1, \ldots, k \), \((X_i, \Gamma_{X_i}) \) is a minimally connected subgraph of \(G \). If \(k = n \) then \(G \) has no circuits. Thus if \(k = 1 \) or \(k = n \) the lemma is true by Lemmas 2.4 and 2.6. If \(2 \leq k \leq n - 1 \) then, by Lemma 2.3, the shrinkage of \(X_1, \ldots, X_k \) leads to a minimally ordered graph \(G^* \). Clearly \(G^* \) has no circuits; hence it has no more than \(\frac{1}{2}k^2 \) arcs. By Lemma 2.4 each of the subgraphs \((X_i, \Gamma_{X_i}), i = 1, \ldots, k \), has at most \(2(|X_i| - 1) \) arcs. Thus \(G \) has no more than

\[
\frac{1}{2}k^2 + 2 \sum_{i=1}^{k} (|X_i| - 1) = \frac{1}{2}k^2 + 2(n - k) \leq g(n)
\]

arcs.

Corollary 2.9. Every finite graph \(G \) has a partial graph with no more than \(g(n) \) arcs which defines the same weak ordering on the vertices of \(G \) as \(G \).

3. Minimal separating collections. We recall some of the definitions of [2]. Let \(N \) be a finite nonempty set. Let \(\mathcal{D} \) be a collection of subsets of \(N \) and let \(i, j \in N, i \neq j \). \(i \) is separated by \(\mathcal{D} \) from \(j \) if there exists a set \(S \in \mathcal{D} \) such that \(i \in S \) and \(j \notin S \). \(\mathcal{D} \) is separating if for every pair \(i, j \in N \), \(i \) is separated from \(j \) by \(\mathcal{D} \) if and only if \(j \) is separated from \(i \) by \(\mathcal{D} \). A separating collection is minimal separating if it does not contain a proper subcollection which is separating. A collection \(\mathcal{D} \) is completely separating if for all pairs \(i, j \in N \), \(i \neq j \), \(i \) is separated from \(j \) and \(j \) is separated from \(i \) by \(\mathcal{D} \). A completely separating collection is minimal completely separating if it does not contain a proper subcollection which is completely separating. We remark that a completely separating collection which is minimal separating is a minimal completely separating collection.

Example 3.1. Let \(N \) be a finite nonempty set. The collections \(\mathcal{D}_1(N) = \{ \{i\} : i \in N \} \) and \(\mathcal{D}_2(N) = \{ N - \{i\} | i \in N \} \) are minimal separating and completely separating.

Example 3.2. Let \(N = \{1, \ldots, n\} \) be the set of the first \(n \) natural numbers. Let \(S_i = \{j | j \leq i\}, i = 1, \ldots, n - 1 \). The collection
\{S_1, \ldots, S_{n-1}, N-S_1, \ldots, N-S_{n-1}\} is minimal completely separating and has \(2(n-1)\) sets.

Example 3.3. Let \(N\) be a set with \(n\) members, \(n \geq 5\). Let \(A \subseteq N\) have \(\frac{1}{2}n\) members if \(n\) is even, and \(\frac{1}{2}(n-1)\) members if \(n\) is odd. The collection \(\{S \cup T \mid S \in \mathcal{D}_1(A), T \in \mathcal{D}_2(N-A)\}\) is minimal separating and completely separating and has \(f(n)\) sets (see Example 3.1, where \(\mathcal{D}_1\) and \(\mathcal{D}_2\) are defined, and Lemma 2.6 where \(f(n)\) is defined).

Definition 3.4. Let \(\mathcal{D}\) be a collection of subsets of a finite nonempty set \(N\). An ordered pair \((i, j)\) of members of \(N\) is a distinguished pair (with respect to \(\mathcal{D}\)) if there is exactly one set \(S \in \mathcal{D}\) such that \(i \in S\) and \(j \in S\).

Lemma 3.5. If \(\mathcal{D}\) is a minimal completely separating collection of subsets of a finite nonempty set \(N\), then for each \(S \in \mathcal{D}\) there exists a distinguished pair \((i, j)\) such that \(i \in S\) and \(j \in S\).

The proof, which is straightforward, is omitted.

Theorem 3.6. Let \(N\) be a finite nonempty set with \(n\) members. The maximum number of sets in a minimal completely separating collection of subsets of \(N\) is \(g(n)\) (see Lemma 2.8 where \(g(n)\) is defined).

Proof. Let \(\mathcal{D}\) be a minimal completely separating collection of subsets of \(N\). Define a graph \(G = (\mathcal{V}, \Gamma)\), where \(\Gamma\) is defined by: \(j \in \Gamma(i)\) if and only if \((i, j)\) is a distinguished pair (with respect to \(\mathcal{D}\)). By Corollary 2.9, \(G\) has a partial graph \(G' = (\mathcal{V}, \Gamma')\) which defines the same weak ordering as \(G\) and has no more than \(g(n)\) arcs. Let \(\mathcal{D}' \subseteq \mathcal{D}\) be defined by: \(\mathcal{D}' = \{S \mid S \in \mathcal{D}\ \text{and there exists a pair } (i, j) \text{ such that } j \in \Gamma'(i), i \in S \text{ and } j \in S\}\). \(\mathcal{D}'\) has at most \(g(n)\) sets. We shall show that \(\mathcal{D}' = \mathcal{D}\). Suppose, per absurdum, that there exists \(S \in \mathcal{D} - \mathcal{D}'\). By Lemma 3.5 there exists a distinguished pair \((i, j)\) such that \(i \in S\) and \(j \in S; j \geq i\) according to the ordering of \(G\). Since \(G'\) defines the same ordering, there exists a path \(\mu = [i, a_1, \ldots, a_{l-1}, j]\) in \(G'\). Let \(S_1, \ldots, S_i\) be sets in \(\mathcal{D}'\) such that \(i \in S_1, a_1 \in S_1, a_1 \in S_2, a_2 \in S_2, \ldots, a_{l-1} \in S_i, j \in S_i\). Since \(i \in S, S \neq S_1\) and \((i, a_1)\) is a distinguished pair, \(a_1 \in S\). Using induction we can show that all the vertices of \(\mu\) are in \(S\). Since \(j \in S\) we have a contradiction which shows that \(\mathcal{D}' = \mathcal{D}\). Hence the number of sets in \(\mathcal{D}\) is not greater than \(g(n)\). Examples 3.2 and 3.3 show that the bound \(g(n)\) is attained.

Corollary 3.7. Let \(N\) be a finite nonempty set with \(n\) members. The maximum number of sets in a minimal separating completely separating collection of subsets of \(N\) is \(f(n)\) for \(n \geq 7\), and is not greater than \(2(n-1)\) for \(n < 7\).
Proof. Theorem 3.6 and Example 3.3.

References

The Hebrew University of Jerusalem

IMBEDDING CLOSED RIEMANN SURFACES IN C^n

K. V. RAJESWARA RAO

I. Introduction. Let R be a closed Riemann surface of genus g, G a nonempty, open subset of R, and A the set of all complex valued functions that are continuous on R and holomorphic on G. With the usual pointwise operations A is an algebra over the complex field. We consider the problem: how many functions in A suffice to separate points of R?

Let f be a nonconstant member of A. If the genus $g = 0$, Wermer [4] showed that there exist f_1 and f_2 in A which, together with f separate points of R; if $g = 1$, Arens [2] established the existence of f_1, f_2 and f_3 in A which, together with f separate points of R. In this note we shall present a modification of the Wermer-Arens argument to prove the following

Theorem. Let the genus g be arbitrary. If A contains nonconstant functions, then there exist four functions in A which separate points of R and which have no common branch points in G.

The author is indebted to a referee for pointing out an error in an earlier version of the paper.

II. Two lemmas. Let ϕ be a nonconstant member of order n in the field K of meromorphic functions on R. Let w be a point of the extended plane which has n distinct inverse images under ϕ. Denote by $E(\phi, w)$ the finite set which is the union of $\phi^{-1}(w)$ and $\phi^{-1}(\phi(b))$ as b ranges over all the branch points of ϕ. For (fixed) ϕ and ψ in K, let S

Received by the editors December 7, 1966.

1 Supported by the Air Force Office of Scientific Research and the Purdue Research Foundation.