We consider ordinary graphs (finite, undirected, with no loops or multiple lines). A well-known concept in the theory of graphs is that of the (point) group $\Gamma(G)$ of a graph G, which is the group of all adjacency-preserving permutations of points of G. The elements of $\Gamma(G)$ are called (point-) automorphisms of G. In contrast with the notion of $\Gamma(G)$ is that of the line group $\Gamma'(G)$ of G consisting of all adjacency-preserving permutations of lines of G. This group has been considered in [6]. The purpose of this paper is to treat another natural concept, called total group, and to prove that for any graph G having more than one point, the total group of G is isomorphic to the group of G if and only if no component of G is either a cycle or a complete graph.

1. Preliminaries. Denote the point set of G by $V(G)$ and its line set by $X(G)$. Each member of $V(G) \cup X(G)$ will be called an element of G. We say two elements of G are associated if they are either adjacent or incident. The group of all permutations of elements of G which preserve association will be called the total group of G and denoted by $\Gamma''(G)$.

The line graph [6] of a graph G, denoted by $L(G)$, is that graph whose point set is $X(G)$, and in which two points are adjacent if and only if they are adjacent in G. It is worth observing that $\Gamma'(G) \simeq \Gamma(L(G))$. The notion of total graphs introduced by one of the authors [1] is a convenient tool for our purposes. The total graph $T(G)$ of G is that graph whose point set is $V(G) \cup X(G)$, and in which two points are adjacent if and only if they are associated in G. We should note that $\Gamma''(G)$ is isomorphic to $\Gamma(T(G))$. The graphs G and $L(G)$ are disjoint subgraphs of $T(G)$. For illustration two graphs G and H are given in Figure 1 together with their line and total graphs. We observe that $\Gamma(G) \simeq \Gamma(T(G)) \simeq S_2$ (the symmetric group on two letters) while $\Gamma(H) \simeq S_2$ and $\Gamma(T(H)) \simeq S_3$.

The number of lines incident with a point v of a graph G is denoted by $\deg_G(v)$. For a point v of $T(G)$ belonging to $V(G)$ we have $\deg_{T(G)}(v) = 2 \deg_G(v)$, and for a point u of $T(G)$ belonging to $X(G) = V(L(G))$ we have $\deg_{T(G)}(u) = \deg_G(a) + \deg_G(b)$, where a and b are the points of G incident with u. Thus if $\deg_{T(G)}(v)$ is maximal, then it is an even number.

Received by the editors November 18, 1966.

Definitions not given here may be found in [3] or [4].
If a is a point of a graph G, then the subset of $V(G)$ consisting of the points adjacent with a is called the neighborhood of a in G and is denoted by $N_G(a)$. The subgraph of G generated by the points a_1, a_2, \ldots, a_n of G will be denoted by $\langle a_1, a_2, \ldots, a_n \rangle_G$. Finally, we denote by K_p the complete graph of order p.

2. Results. We begin this section with

Lemma 1. Assume G is any connected graph which is not a path (arc), a cycle, or a complete graph. Let a_0 be a point of $H = T(G)$ which has maximal degree $2d$. Then $a_0 \in V(G)$ if and only if the graph generated by $N_H(a_0)$ has exactly one K_d as a subgraph.

Proof. The hypotheses imply that $d \geq 3$.

(i) Assume $a_0 \in V(G)$. The set $N_H(a_0)$ consists of d points a_i of G and d points b_i of $L(G)$, $i = 1, 2, \ldots, d$. Since the b_i are exactly those points of $L(G)$ which correspond to the lines a_0a_i of G, which are all mutually adjacent in G, it follows that the b_i are all mutually adjacent in H and generate a K_d in H. Now each b_i is, by definition of total graphs, adjacent with exactly one of the a_i, $1 \leq i \leq d$, and therefore no subset of $N_H(a_0)$ which contains some a_i together with some b_i can generate a K_d. Nor can the a_i themselves generate a K_d. For, otherwise $\langle a_0, a_1, \ldots, a_d \rangle_H = K_{d+1}$, and since G is connected but not complete, there should exist at least one more point a_{d+1} in G adjacent
with some \(a_j \)—contradicting the maximality of \(d \). Thus the necessity of the condition is established.

(ii) Assume \(a_0 \in V(L(G)) \). We observe that \(N_H(a_0) \) consists of two points \(a_1 \) and \(a_2 \) of \(G \) and \(2(d-1) \) points \(b_i \) of \(L(G) \). The latter points are those in \(L(G) \) which correspond to the lines of \(G \) incident with \(a_1 \) or with \(a_2 \); they are, by the maximality of \(d \), distributed equally between \(N_H(a_1) \) and \(N_H(a_2) \). Those of the \(b_i \) which are in \(N_H(a_1) \) are all mutually adjacent and generate a \(K_d \) together with \(a_1 \). Similarly \(a_2 \) and the remaining \(b_i \) generate a \(K_d \). This completes the proof of the lemma.

Theorem 1. Let \(G \) be a connected graph which is neither a cycle nor a complete graph. If \(H = T(G) \), then \(G \) is the only subgraph of \(H \) whose total graph is \(H \).

Proof. Let \(G' \) be any subgraph of \(H \) such that \(H = T(G') \). We shall show that \(G' = G \).

(i) Assume \(G \) is not a path. Take a point \(a_0 \) of \(G \) such that \(\deg_G(a_0) = d \) is maximal in \(G \). By Lemma 1 the point \(a_0 \) also belongs to \(G' \). We assert that \(N_G(a_0) = N_{G'}(a_0) \). This follows from the fact that the \(d \) points \(b_1, b_2, \ldots, b_d \) of \(N_H(a_0) - N_G(a_0) \) form the only \(K_d \) in \(N_H(a_0) \). By the proof of Lemma 1, the \(b_i \) which belong to \(L(G) \) should belong to \(L(G') \) as well. Let \(a_1, a_2, \ldots, a_d \) be the points of \(N_G(a_0) \). By the definition of total graphs two points of \(G \) can be adjacent in \(T(G) \) if and only if they are adjacent in \(G \). Thus \(A_1 = \{a_0, a_1, \ldots, a_d\}_H \) is contained in both \(G \) and \(G' \).

Now we proceed by induction. Assume that for \(k \geq 1 \) the points \(a_0, a_1, \ldots, a_{d+k-1} \) of \(H \) have been determined such that \(A_k = \{a_0, a_1, \ldots, a_{d+k-1}\}_H \) is contained in both \(G \) and \(G' \). Also assume that the subgraph \(L(A_k) \) of \(H \) is contained in \(L(G') \) as well as in \(L(G) \). If \(G \neq A_k \), then there exists at least one point \(a_{d+k} \) of \(G \) which is adjacent in \(G \) with some point \(a_j \) of \(A_k \). We show that \(a_{d+k} \) is also a point of \(G' \). If not, \(a_{d+k} \) belongs to \(L(G') \) and corresponds to a line of \(G' \) incident with \(a_j \), say \(a_ja \). By the induction hypotheses \(c \) is not a point of \(A_k \). There is at least one line in \(A_k \) incident with \(a_j \), say \(a_ja \); we denote the point of \(L(A_k) \) corresponding to this line by \(b \). The points \(b \) and \(a_{d+k} \) have to be adjacent in \(T(G') \); but this implies the contradiction that in \(T(G) \) the line \(b \) corresponds to the two lines \(a_ja \) and \(a_ja_{d+k} \). Thus \(A_{k+1} = \{a_0, a_1, \ldots, a_{d+k}\}_H \) is a subgraph of both \(G \) and \(G' \).

Let \(a_i \) be any point of \(A_k \) adjacent with \(a_{d+k} \). Denote by \(b' \) the point of \(L(G') \) corresponding to \(a_{d+k}a_i \). If \(b' \) is not in \(L(G) \), then it is a point of \(G \). But then the proof, given above, for the assertion that \(A_{d+k} \) belongs to \(G' \) is applicable to \(b' \) and leads to a contradiction. Thus \(b' \)
is the point of $L(G)$ corresponding to the line $a_{d+k}a_i$. Hence $L(A_{k+1})$ is a subgraph of both $L(G)$ and $L(G')$. This completes the induction.

If p is the order of G, then A_{p-d} implies that G is a subgraph of G' and that $L(G)$ is a subgraph of $L(G')$. This proves at once that $G = G'$.

(ii) Let G be a path of order p. Since G is not complete we have $p \geq 3$. The graph H has exactly two points a_1 and a_p of degree 2 which are the end points of the path G. Since the degree of no point of H exceeds 4, the degree of no point of G' can exceed 2. Thus G' is a path with end points a_1 and a_p. Observing that the order of G' should also be p, and that G is the only path of order p in H with end points a_1 and a_p, it follows that $G' = G$. This completes the proof of Theorem 1.

Considering disconnected graphs, we note that if G has n components G_i, then $T(G)$ has n components $T(G_i)$, $i = 1, 2, \ldots, n$, and vice versa. Thus we have

Corollary 1. Let G be a graph none of whose components is a cycle or a complete graph. If $T(G) = T(G')$ for any subgraph G' of $T(G)$, then $G' = G$.

The following theorem is of interest in itself; it is the analog of the theorem of Whitney [6] for line-graphs which states that given any two connected graphs G_1 and G_2 other than K_3 and $K_{1,3}$ we have $L(G_1) \simeq L(G_2)$ if and only if $G_1 \simeq G_2$. (The symbol \simeq indicates isomorphism.)

Theorem 2. Let G_1 and G_2 be two graphs. Then $T(G_1) \simeq T(G_2)$ if and only if $G_1 \simeq G_2$.

Proof. It suffices to prove the result for connected graphs. The isomorphism of $T(G_1)$ and $T(G_2)$ follows from that of G_1 and G_2 by definition. Thus we show the converse. In view of Theorem 1 we can confine ourselves to the case in which G_1 is either a cycle or a complete graph. Since a graph is regular of degree d and order p if and only if its total graph is regular of degree $2d$ and order $p(1+d/2)$, it follows that in both cases G_2 is regular and has the same degree and order as G_1. This implies, in both cases, that $G_1 \simeq G_2$.

Next we state our main result.

Theorem 3. For any graph G other than a single point the two groups $\Gamma''(G)$ and $\Gamma(G)$ are isomorphic if and only if no component of G is either a complete graph or a cycle.

Proof. Each automorphism f of G can be extended to an automorphism f' of $T(G)$ as follows: if a is a point of $V(T(G)) - V(G)$, then
it corresponds to some line bc of G, and we let $f'(a) = a'$, where a' is the point of $T(G)$ corresponding to $f(b)f(c)$. The function f' is indeed an automorphism of $T(G)$, because (1) if $a \in V(T(G)) - V(G)$, then it is adjacent with exactly two points a_1 and a_2 of G; by definition of f' the point $f'(a)$ is adjacent to the two points $f'(a_1)$ and $f'(a_2)$, and (2) if a_1 and a_2 are two adjacent points of $V(T(G)) - V(G)$, then the adjacency of $f'(a_1)$ and $f'(a_2)$ follows from the fact that the restriction of f' to $L(G)$ is the automorphism induced [5] by f.

If f_1 and f_2 are any two automorphisms of G, we observe that $(f_1f_2)' = f_1'f_2'$. Furthermore, if f_1 and f_2 are distinct, then so are f_1' and f_2', so that $\Gamma(T(G))$ (which is the same as $\Gamma''(G)$) contains an isomorphic image of $\Gamma(G)$.

Let $g \in \Gamma(T(G))$. If we denote by G' the image under g of the subgraph G of $T(G)$, then the image of the subgraph $L(G)$ is a subgraph which is necessarily $L(G')$. Also if v is a point of $L(G)$ adjacent with a point u of G, then $g(v)$ is a point of $L(G')$ adjacent with the point $g(u)$ of G'. Hence $T(G) = T(G')$.

If G has no complete graph or cycle as a component, then $G = G'$ by Corollary 1 of Theorem 1. Thus every automorphism of $T(G)$ is an extension of some automorphism of G, implying $\Gamma''(G) = \Gamma(G)$.

If the above subgraphs G and G' are distinct, then for no automorphism f of G we have $g = f'$. So $\Gamma''(G)$ is not isomorphic with $\Gamma(G)$. To complete the proof of the theorem, it suffices to show that if G is either a cycle or a complete graph other than K_1, then $T(G)$ contains a subgraph G', $G' \neq G$, with $T(G) = T(G')$.

(i) If G is a cycle, then the subgraph $L(G)$ of $T(G)$ is isomorphic to G and we have $T(L(G)) = T(G)$.

(ii) Now let $G = K_p$, $p > 1$, $H = T(G)$, and let a_0 be a point of the subgraph G of H. Denote the points of $N_G(a_0)$ by $a_1, a_2, \ldots, a_{p-1}$. For each i, $1 \leq i \leq p-1$, let b_i denote the point of the subgraph $L(G)$ of H which corresponds to the line a_0a_i. We shall prove that $T(G') = H$, where $G' = \langle a_0, b_1, \ldots, b_{p-1} \rangle_H$. Let f be the permutation of $V(H)$ defined by: $f(a_i) = b_i, f(b_i) = a_i$ for $1 \leq i \leq p-1$, and $f(v) = v$ otherwise. The function f is an automorphism of H. In fact, for $1 \leq i \leq p-1$, the a_i are mutually adjacent and so are the b_i; hence it would suffice to show that if $v, v \neq a_0$, is a point of H different from the a_i and b_i, $1 \leq i \leq p-1$, which is adjacent with some a_k, then v is adjacent with b_k and conversely. Since v and b_k are both points of $L(G)$, they are adjacent if and only if they correspond to adjacent lines of G. This occurs if and only if a_0a_k and the line of G corresponding to v, say a_ra_s, $1 \leq r < s \leq p-1$, are adjacent, which is true if and only if either
$r = k$ or $s = k$. Since the only a_i adjacent with v are a_r and a_s, our assertion follows.

Remark. Let G be either a cycle or a complete graph. The subgraphs of $T(G)$ whose total graphs coincide with $T(G)$ have been enumerated elsewhere [2]. Here we treat these cases briefly. We first observe that if G and G' are any two subgraphs of H such that $H = T(G) = T(G')$, then every isomorphism of G onto G' gives rise to an automorphism of H.

(i) For $G = K_3$, $T(G)$ is the total graph of each of its eight triangles; $\Gamma''(G)$ has order 48.

(ii) For a cycle G of order p, $p > 3$, the only other subgraph of $T(G)$ whose total graph is $T(G)$ is $L(G)$; $\Gamma''(G)$ has order $4p$.

(iii) For a complete graph G of order p, $p > 3$, there are exactly p other subgraphs G_i of $T(G)$ with $T(G_i) = T(G)$, $i = 1, 2, \ldots, p$. Thus the order of $\Gamma''(G)$ is $(p+1)!$.

We conclude the paper with the observation that for a connected graph G, $\Gamma(G) \cong \Gamma'(G) \cong \Gamma''(G)$ if and only if G is not (1) a complete graph, (2) a cycle, or (3) the graph K_4 minus one or two lines. This follows from our results together with [6].

Bibliography

Pahlavi University, Shiraz, Iran