ON A SEMIPRIMARY RING

KWANGIL KOH

Let R be a ring with 1 having radical (Jacobson) N. R is called semiprimary [2, p. 56] if and only if R/N satisfies the minimum condition for right ideals. If M is a right R-module, a submodule A of M is called small [5] if $A + B = M$ for any submodule B of M implies $B = M$. A submodule A of M is called large [3] if $A \cap B = 0$ for any submodule B of M implies $B = 0$. A right ideal in R is called small or large if I is small or large as a submodule of the right regular R-module R_R. A projective cover [1] of M is an epimorphism of a projective module onto M such that its kernel is small. The main results of this paper are the following theorems:

Theorem 1. Every irreducible (right) R-module has a projective cover if and only if R is semiprimary and for any nonzero idempotent $x+N$ in R/N there is a nonzero idempotent e in R such that $ex - e \in N$.

Theorem 1 is related to Theorem 2.1 of [1].

Theorem 2. If R is commutative then every irreducible R-module has a projective cover if and only if R is semiprimary and for any nonzero idempotent $x+N$ in R/N there is an idempotent $e \in R$ such that $x - e \in N$.

Lemma 1. If I is a maximal right ideal of R then the right R-module R/I has a projective cover if and only if there is a nonzero idempotent $e \in R$ such that eI is small.

Proof. Let f be an epimorphism from a projective module P onto R/I such that the kernel of f is small in P. Since R is projective (as R_R), there is an R-homomorphism h from R into P making

\[
\begin{array}{ccc}
R & \xrightarrow{h} & P \\
\downarrow \pi & & \downarrow f \\
R/I & \xrightarrow{\pi} & 0 \\
\end{array}
\]

where π is the natural mapping, commutative. Since for any arbitrary $p \in P$, $f(p) = \pi(x) = fh(x)$ for some $x \in R$, $p - h(x) \in \text{Ker } f$. Hence

Received by the editors November 1, 1966.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
\(P = \text{Ker} f + h(R). \) Since the \(\text{Ker} f \) is small, this implies that \(P = h(R). \)

Let \(p_0 = h(1). \) Then \(P = p_0R \) and \(R^{f_{p_0}} p_0R \rightarrow 0, \) where \(t_{p_0}(x) = p_0x \) for all \(x \in R, \) is direct since \(P \) is projective. Hence \(\text{Ker} t_{p_0} = \{ r \in R \mid p_0r = 0 \} \) is a direct summand of \(R. \) Since \(p_0 = h(1), \) \(\text{Ker} h = \text{Ker} t_{p_0}. \)

If \(h(I) = 0, \) then \(\text{Ker} t_{p_0} = I \) and \(I \) is a direct summand of \(R. \) Hence there is a minimal right ideal \(J \) in \(R \) such that \(R = J \oplus I. \) Thus, by \([2, \text{p. 50}],\) there is an idempotent \(e \neq 0 \) in \(J \) such that \(eI = 0 \) is small. If \(h(I) \neq 0 \) then \(h(I) \subset \text{Ker} f \) since \(fh(I) = \pi(I) = 0. \) Thus \(h(I) \) is small. Since \(h(R) \) is projective, there is an \(R \)-homomorphism \(\phi \) from \(h(R) \) making

\[
\begin{array}{ccc}
R & \xrightarrow{i} & h(R) \\
\phi \downarrow & & \downarrow h \\
\end{array}
\]

where \(i \) is the identity map, commutative. Since \(h(I) \) is small, \(\phi(h(I)) \) is small in \(R \) by \([4, \text{p. 93}],\) Let \(\phi(p_0) = a \in R. \) Then \(p_0 = h\phi(p_0) = h(a) = h(1)a = p_0a. \) Therefore, \(a = \phi(p_0) = h(p_0a) = a^2 \) and \(aI = \phi(h(I)) \) is small. Clearly \(a \neq 0 \) since \(h\phi(p_0) = p_0. \) Conversely, suppose there is a nonzero idempotent \(e \) in \(R \) such that \(eI \) is small. Since \(eI \subseteq N \) by \([1, \text{Lemma 2.4}],\) the right ideal \((I: e) = \{ r \in R \mid er \in I \} \) is \(I. \) Define a mapping \(g \) from \(eR \) onto \(R/I \) by \(g(er) = r + I \) for all \(er \in eR. \) Since \(er_1 = er_2 \) then \(r_1 - r_2 \in (I: e) = I, \) \(g \) is well defined and clearly \(g \) is an \(R \)-homomorphism from \(eR \) onto \(R/I. \) Furthermore since \(eR \) is a direct summand of \(R, \) \(eR \) is projective and since the kernel of \(g \) is \(eI, \) which is small, \(g \) is a projective cover for \(R/I. \)

Lemma 2. Let \(I \) be a large maximal right ideal in \(R \) and let \(L = \{ x \in R \mid xI = 0 \}. \) Then \(L^2 = 0. \)

Proof. If \(x \neq 0, y \neq 0 \) are elements in \(L \) then \(I \cap yR \neq 0 \) and \(x(yr) = 0 \) for some \(r \in R \) such that \(yr \neq 0 \) in \(I. \) If \(xy \neq 0, \) then \(r \in I \) since the set \(\{ r \in R \mid (xy)r = 0 \} = I. \) This is impossible since \(yr \neq 0 \) and \(y \in L. \) Thus \(L^2 = 0. \)

Proof of Theorem 1. Suppose every irreducible \(R \)-module has a projective cover. Let \(\overline{I} \) be a maximal right ideal of \(R/N. \) Then there is a maximal right ideal \(I \) in \(R \) such that \(\overline{I} = I/N. \) By Lemma 1, there is a nonzero idempotent \(e \) in \(R \) such that \(eI \) is small. By \([1, \text{Lemma 2.4}],\) \(eI \subseteq N. \) Since \(e \subseteq N, \) \(e + N \) is a nonzero left annihilator of \(\overline{I}. \) Hence by Lemma 2, \(\overline{I} \) cannot be large. Since \(\overline{I} \) is a maximal right ideal of \(R/N, \) \(\overline{I} \) must be a direct summand of \(R/N \) if \(\overline{I} \) is not large. Thus by
[6, Lemma 3.1], \(R/N \) must be a semisimple ring with the minimum condition for right ideals. Now let \(x \in R \) such that \(x^2 - x \in N \). If \(x \in N \), by Zorn's Lemma, we can construct a right ideal \(J^* \) in \(R \) with the properties that \(N \subseteq J^* \), \(x \in J^* \) such that if \(K \) is a right ideal which contains \(J^* \) properly then \(x \in K \). Then the right \(R \)-module \(xR + J^*/J^* \) is irreducible and \((J^*: x) = \{ r \in R \mid xr \in J^* \} \) is a maximal right ideal of \(R \). Hence there is an idempotent \(e \neq 0 \) in \(R \) such that \(e \cdot (J^*: x) \subset N \). Since \(x^2 - x = x(x - 1) \in N \), \((x - 1) \in (J^*: x) \) and \(e(x - 1) = ex - e \in N \). Conversely, suppose \(R \) is semiprimary and if \(x + N \) is a nonzero idempotent in \(R/N \) then there is a nonzero idempotent \(e \) in \(R \) such that \(ex - e \in N \). If \(I \) is a maximal right ideal of \(R \), \(I/N \) is a maximal right ideal of \(R/N \), and since \(R \) is semiprimary, there is a minimal right ideal \(K/N \) in \(R/N \) such that \(K/N \cap I/N = N \) and \(K/N \oplus I/N = R/N \) (see [4, p. 67]). Let \(\tilde{x} = x + N \), for some \(x \in R \), be a nonzero idempotent in \(K/N \) such that \(\tilde{x} \cdot (I/N) = N \). By hypothesis, there is a nonzero idempotent \(e \) in \(R \) such that \(ex - e \in N \). Since \(xI \subset N \) and \(ex - e \in N \), \(eI \subset N \). Thus by Lemma 1, \(R/I \) has a projective cover.

The following corollary is related to Corollary 1 of [4, p. 76].

Corollary. A ring \(R \) is local (i.e. \(R/N \) is a division ring) if and only if 1 is a primitive idempotent and every irreducible \(R \)-module has a projective cover.

Proof. If \(R \) is a local ring then 1 and 0 are only idempotents in \(R \), and since \(N \) is the only maximal right (left) ideal in \(R \), every irreducible \(R \)-module has a projective cover. Conversely, suppose every irreducible \(R \)-module has a projective cover and 1 is a primitive idempotent in \(R \). By Theorem 1, \(R/N \) is a semisimple ring with the minimum condition on right ideals and if \(x + N \) is a nonzero idempotent in \(R/N \) there is a nonzero idempotent \(e \) in \(R \) such that \(ex - e \in N \). Since 1 is a primitive idempotent in \(R \), \(e = 1 \). Hence only idempotents in \(R/N \) are zero and \(1 + N \). Since \(R/N \) is semisimple with a minimal right ideal, this implies that \(R \) is a local ring.

Proof of Theorem 2. We only need to prove that if \(R \) is commutative such that every irreducible \(R \)-module has a projective cover then idempotents modulo \(N \) can be lifted. We first prove that if \(x \in R \) is an idempotent such that \((x + N)(R/N) \) is a minimal ideal in \(R/N \) then \(x - e \in N \) for some idempotent \(e \) in \(R \). Let \(J^* \) be as in the proof of Theorem 1. Since \(xR + N \supset J^* \supset N \) and \(xR + N/N \) is a minimal ideal of \(R/N \), \(J^* = N \) since \(J^* \) is properly contained in \(xR + N \). As in the case of the proof of Theorem 1, there is an idempotent \(e \) in \(R \) such that \(e \cdot (J^*: x) = e \cdot (N: x) \subset N \). Now \((N: ex) = (N: x) = (N: e) \) since \((N: x) \) is a maximal ideal and \((N: ex) \supset (N: x) \supset (N: e) \supset (N: ex) \). Thus
\[(1-e) \in (N: e) = (N: x) \] and \[x - xe \in N. \] Since \[e x - e \in N, \] this implies that \[x - e \in N. \] Now let \[g = g^2 \] in \(R\) such that \[xg \in N. \] Since \[e - x \in N, \] \[eg \in N. \] Let \[e' = e - eg. \] Then \[g \cdot e' = 0 \] and \[e' \cdot e' = (e - eg)(e - eg) = e - eg - eg + eg = e'. \] \[e' + N = e + N = x + N. \] It is well known that if \(R/N\) is a semisimple ring with the minimum condition then \[1 + N = (x_1 + N) + (x_2 + N) + \cdots + (x_n + N) \] for some positive integer \(n\) where \[x_i - x_i^2 \in N, \ i = 1, 2, \cdots, n, \] \[x_i x_j \in N \] if \(i \neq j\) and \[(N: x_i), \] for each \(i, \) is a maximal right ideal (see [2, p. 46 and p. 50]). By the above argument, we can choose an orthogonal set of idempotents \(e_1, e_2, \cdots, e_n\) in \(R\) such that \[x_i - e_i \in N, \ i = 1, 2, \cdots, n, \] and \[1 + N = (e_1 + N) + (e_2 + N) + \cdots + (e_n + N). \] Now let \(y + N\) be an arbitrary nonzero idempotent in \(R/N. \) Then \[y + N = (e_1 y + N) + (e_2 y + N) + \cdots + (e_n y + N) \] and \[e_i y \cdot e_j y \in N \] if \(i \neq j\) and \[(N: e_i y) \] is a maximal ideal for all \(i\) such that \(e_i y \in N. \) There is an orthogonal set of idempotents \(a_1, a_2, \cdots, a_n\) in \(R\) such that \[y - (a_1 + a_2 + \cdots + a_n) \in N \] and \[(a_1 + a_2 + \cdots + a_n)^2 = (a_1 + a_2 + \cdots + a_n). \]

References

North Carolina State University

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use