HOMOTOPY TYPES OF ARNS'S

J. M. KISTER

Mather (Topology 4 (1965), 92–93) showed that there were only a countable number of homotopy types of compact topological manifolds. His proof used Whitehead's celebrated theorem on homotopy types. The purpose of this note is to give a short direct elementary point-set proof of the following generalization of Mather's result:

Theorem. There are only countably-many homotopy types of compact metric ANR's.

Proof. Suppose not. Let \(\{A_\beta\} \) be an uncountable collection of different types. We may regard each \(A_\beta \) as a subset of the Hilbert cube \(I^\omega \). For each \(\beta \) let \(\epsilon_\beta \) be chosen so that \(A_\beta \) is a retract of its \(\epsilon_\beta \)-neighborhood \(U_\beta \) in \(I^\omega \). Let \(r_\beta: U_\beta \rightarrow A_\beta \) be a retraction map. Since \(\{A_\beta\} \) is uncountable we may assume (by choosing a subcollection) that there is a positive \(\epsilon \) so that \(\epsilon_\beta \geq \epsilon \) for each \(\beta \).

Note that if \(f \) and \(g \) are any two maps of a space \(X \) into an \(A_\beta \) so that the distance in \(I^\omega \) between \(f(x) \) and \(g(x) \) is less than \(\epsilon \), for all \(x \) in \(X \), then \(f \) and \(g \) are homotopic. In fact \(F(x, t) = r_\beta((1-t)f(x) + tg(x)) \) is the desired homotopy, where we use the linear structure in \(I^\omega \).

For each \(\beta \) there is a \(\delta_\beta > 0 \) so that \(r_\beta \) restricted to the \(\delta_\beta \)-neighborhood of \(A_\beta \) moves no point as far as \(\epsilon/2 \). Again we may assume that there is a positive \(\delta \) so that \(\delta_\beta \geq \delta \) for each \(\beta \).

The hyperspace of all closed subsets of \(I^\omega \) with the Hausdorff metric is separable (e.g. if \(D \) is any countable dense set in \(I^\omega \), the collection of finite subsets of \(D \) is countable and dense in the hyperspace). Since every uncountable set, in a space satisfying the Second Axiom of Countability, contains a limit point, we see that for some \(\beta \) and \(\gamma \), \(A_\beta \) is in the \(\delta \)-neighborhood of \(A_\gamma \) and vice versa. Then \(r_\gamma | A_\beta \) and \(r_\beta | A_\gamma \) are homotopy inverses of each other, since their compositions in either direction move points a distance less than \(\epsilon \), hence, are homotopic to the corresponding identity maps. This shows \(A_\beta \) and \(A_\gamma \) have the same homotopy type, a contradiction.

University of Michigan

Received by the editors November 29, 1966.