A topological space is said to be totally paracompact \cite{4} if every open basis contains a locally finite cover. It is known \cite{2} that no reflexive infinite-dimensional Banach space is totally paracompact. It is also known \cite{1}, \cite{3} that the space of irrationals with usual topology is not totally paracompact. In the present paper we prove a theorem which gives a necessary condition in order that a subset of a complete metric space be totally paracompact. This allows us to exhibit some pathology (Corollary 2) among the separable metric spaces which are not totally paracompact.

Let γ be a collection of sets. We denote by $|\gamma|$ the union of elements of γ. The collection γ is called point-finite if no point belongs to infinitely many elements of γ. By a Cantor set we mean a set homeomorphic with the Cantor ternary set.

Lemma. Let X be a complete metric space and $Y \subset X \setminus Z$ where Z is a nonempty subset of X such that no point of Z is isolated in Z. There exists an open basis β of Y such that if $\gamma \subset \beta$ is point-finite, then $X \setminus |\gamma|$ contains a Cantor set.

Proof. We take an increasing infinite sequence $A_1 \subset A_2 \subset \cdots$ of nonempty countable compact subsets A_n of Z such that no point of A_n is isolated in A_{n+1} for $n = 1, 2, \cdots$. Let $U_1 \supset U_2 \supset \cdots$ be open subsets of X such that

$$A_n = U_1 \cap U_2 \cap \cdots = \text{Cl } U_1 \cap \text{Cl } U_2 \cap \cdots$$

and let $G_n(1), \cdots, G_n(k_n)$ be open subsets of X such that

$$A_n \subset G_n(1) \cup \cdots \cup G_n(k_n), \quad \text{diam } G_n(i) < n^{-1}$$

for $i = 1, \cdots, k_n$. Let V_n be an open subset of X such that

$$A_n \subset V_n, \quad \text{Cl } V_n \subset G_n(1) \cup \cdots \cup G_n(k_n)$$

and let β_n' denote the collection of all open subsets of $X \setminus \text{Cl } V_n$.

We put

$$\beta_n = \beta_n' \cup \{ [G_n(i) \setminus \text{Cl } U_n] \cap Y \mid i = 1, \cdots, k_n; j = 1, 2, \cdots \}$$

and we define $\beta = \beta_1 \cup \beta_2 \cup \cdots$. Since $Y \subset X \setminus A_n$, each point from

Received by the editors September 23, 1966.

1 This research had partially been done when the author was visiting the Louisiana State University and the University of Wisconsin.
ON TOTALLY PARACOMPACT METRIC SPACES

Y \cap \text{Cl} V_n belongs to a set \(G_n(i) \setminus \text{Cl} U_{nj} \) whose diameter is less than \(n^{-1} \). Therefore \(\beta \) is an open basis of \(Y \).

Consider an arbitrary point-finite collection \(\gamma \subset \beta \). The collection \(\beta_n \setminus \beta_n' \) splits into \(k_n \) increasing infinite sequences. Setting \(\gamma_n = \beta_n \cap \gamma \) we conclude that \(A_n \cap X \setminus \text{Cl} \left| \gamma_n \right| \) for \(n = 1, 2, \ldots \). No point of \(A_1 \) is isolated in \(A_2 \), and so there exist two points \(p_0, p_1 \) of \(A_2 \) belonging to \(X \setminus \text{Cl} \left| \gamma_1 \right| \). We take an open neighborhood \(W(m) \) of \(p_m \) (\(m = 0, 1 \)) such that

\[
W(m) \subset X \setminus \text{Cl} \left| \gamma_1 \right| , \quad \text{Cl} W(0) \cap \text{Cl} W(1) = \emptyset ,
\]

and \(\text{diam} \ W(m) < 1 \). Let us assume \(n > 1 \) is an integer, and an open neighborhood \(W = W(m_1, \ldots, m_{n-1}) \) of a point from \(A_n \) is defined, where the indices \(m_1, \ldots, m_{n-1} \) are 0 or 1. Then there exist two points \(q_0, q_1 \) of \(A_{n+1} \) belonging to \(W \setminus \text{Cl} \left| \gamma_n \right| \). We take an open neighborhood \(W(m_1, \ldots, m_{n-1}, m) \) of \(q_m \) (\(m = 0, 1 \)) such that

\[
\text{Cl} W(m_1, \ldots, m_{n-1}, m) \subset W(m_1, \ldots, m_{n-1}) \setminus \text{Cl} \left| \gamma_n \right| ,
\]

\[
\text{Cl} W(m_1, \ldots, m_{n-1}, 0) \cap \text{Cl} W(m_1, \ldots, m_{n-1}, 1) = \emptyset ,
\]

and \(\text{diam} \ W(m_1, \ldots, m_{n-1}, m) < n^{-1} \). The intersection

\[
C = \bigcap_{n=1}^{\infty} \bigcup_{(m_1, \ldots, m_n)} \text{Cl} W(m_1, \ldots, m_n)
\]

is a Cantor set, and \(C \subset X \setminus (\left| \gamma_1 \right| \cup \left| \gamma_2 \right| \cup \cdots) = X \setminus \gamma \).

THEOREM. Let \(X \) be a complete metric space and \(Y \subset X \). If \(Y \) is totally paracompact and \(p \in X \setminus Y \), then either \(X \setminus Y \) contains a Cantor set containing \(p \) or each subset of \(X \setminus Y \) containing \(p \) has an isolated point.

PROOF. Suppose there exists a set \(Z \subset X \setminus Y \) such that \(p \in Z \) and no point of \(Z \) is isolated in \(Z \). Applying the lemma to the sets

\[
X_n = \{ x \mid \text{dist} (p, x) \leq n^{-1} \},
\]

\[
Y_n = X_n \cap Y , \quad Z_n = \text{Int} X_n \cap Z ,
\]

we get a Cantor set \(C_n \subset X_n \setminus Y_n \) because \(Y_n \) is totally paracompact \((n = 1, 2, \ldots) \). The union \(\{ p \} \cup C_1 \cup C_2 \cup \cdots \) is a Cantor set contained in \(X \setminus Y \).

COROLLARY 1. Let \(X \) be a complete separable metric space and \(Y \subset X \). If \(Y \) is uncountable and \(Y \) contains no Cantor set, then \(X \setminus Y \) is not totally paracompact.

Each closed subset of a totally paracompact space is totally paracompact. Thus if \(X \) is totally paracompact, no closed subset of \(X \) is
homeomorphic with the irrationals. Answering a question raised by E. Michael we prove the inverse implication is not true. Namely, as a result of Bernstein's construction [5, p. 422] which uses the axiom of choice one can obtain a subset X of the Euclidean $(n+1)$-space E^{n+1} such that both X and $E^{n+1}\setminus X$ have the cardinality of the continuum and contain no Cantor sets.

Corollary 2. If the axiom of choice is true, then there exists, for every $n \geq 0$, an n-dimensional subset X of the Euclidean $(n+1)$-space such that X is not totally paracompact and X contains no Cantor set.

Observe that an analogous singularity exists among totally paracompact spaces. In fact, as a result of Lusin's construction [5, pp. 432–433] using the axiom of choice and the continuum hypothesis one gets an uncountable subset X of the irrationals such that X is totally paracompact and X contains no Cantor set.

Bibliography

Institute of Mathematics of the Polish Academy of Sciences