LIFTING MODULAR REPRESENTATIONS OF FINITE GROUPS

BURTON FEIN

Let \((\pi)\) be the maximal ideal of the ring \(R\) of \(P\)-integral elements of an algebraic number field \(K\), where \(P\) is a prime of \(K\) dividing the rational prime \(p\). The natural homomorphism from \(R\) to \(\overline{K} = R/(\pi)\) induces a map \(S \rightarrow \overline{S}\) from the set of representations by matrices with coefficients in \(R\) of a finite group \(G\) into the set of representations of \(G\) in \(\overline{K}\). The lifting problem in modular representation theory is to determine whether for a given representation \(T\) of \(G\) in \(\overline{K}\) there exists a representation \(S\) of \(G\) by \(R\)-matrices such that \(\overline{S} = T\). In this paper we introduce a notion of lifting projective modular representations from characteristic \(p\) to characteristic zero and show how this concept may be applied to the lifting problem.

Notation. Throughout this paper \(G\) denotes a finite group of order \(|G|\) and \(K\) denotes an algebraic number field which is a splitting field for \(G\). Let \(p\) be a rational prime and let \(R\) be the ring of \(P\)-integral elements of \(K\), where \(P\) is a prime of \(K\) dividing \(p\). Let \((\pi)\) be the maximal ideal of \(R\) and set \(\overline{K} = R/(\pi)\). \(\overline{K}\) is a finite field of characteristic \(p\) which is a splitting field for \(G\). For \(a \in R\), set \(\overline{a} = a + (\pi) \in \overline{K}\). If \(A = (a_{ij})\) is a matrix with entries in \(R\) (\(R\)-matrix) we denote by \(\overline{A}\) the matrix \((\overline{a}_{ij})\). By a linear representation of \(G\) in a field \(L\) we shall understand a homomorphism from \(G\) into \(GL(m, L)\) for some \(m\). By a projective integral representation (resp. projective modular representation) of \(G\) in \(R\) (resp. \(\overline{K}\)) we mean a map \(T\) of \(G\) into \(GL(m, R)\) (resp. \(GL(m, \overline{K})\)) satisfying \(T(1) = 1_m\), \(T(g)T(h) = \alpha(g, h) \cdot T(gh)\) where \(\alpha(g, h) \in R\) (resp. \(\overline{K}\)) and \(T(g)\) has entries in \(R\) (resp. \(\overline{K}\)) for all \(g, h \in G\). \(\alpha\) is called the factor set associated with \(T\). If \(\alpha(g, h) = 1\) for all \(g, h \in G\), \(T\) is a linear integral representation (resp. linear modular representation). We identify linear representations with projective representations having trivial factor sets. We refer the reader to [3] and [7] for the relevant theory.

Definition. Let \(T\) be a projective modular representation of \(G\) in \(\overline{K}\) and let \(\alpha\) be the associated factor set. \(T\) is **projectively liftable** if there exists a projective integral representation \(S\) of \(G\) in \(R\) with factor set \(\beta\) such that \(\overline{S}(g) = T(g)\) for all \(g \in G\). If \(\alpha(g, h) = 1\) for all \(g, h \in G\) (i.e. \(S\) and \(T\) are linear representations), we say that \(T\) is **liftable.**

Received by the editors November 1, 1966.

This research was supported by NSF Grant GP-5497.
We emphasize that, according to the above definition, if we speak of a modular representation T of G in \bar{K} being liftable to an integral representation S of G in R, then both T and S must be linear representations of G.

Lemma 1. Let T and W be projectively equivalent projective modular representations of G of degree m in \bar{K}. If T is projectively liftable, then so is W.

Proof. By assumption there exists a function γ from G to \bar{K} and a matrix $U \in GL(m, \bar{K})$ such that $U^{-1}T(g)U = W(g)\gamma(g)$ for all $g \in G$. Let $V \in GL(m, K)$ having entries in R such that $V = U$ and let α be a function from G to R such that $\alpha^{-1}(g) = \gamma(g)$. $\det V$ is a unit in R so V^{-1} has entries in R. Hence if S is a projective integral representation which projectively lifts T, $V^{-1}SV\alpha$ is a projective lifting of W.

The next lemma will permit us to take finite extensions of K.

Lemma 2. Let K_1 be a finite extension of K and let R_1 be the ring of P_1-integral elements of K_1, where P_1 is a prime of K_1 dividing the prime P of K, i.e. $P_1 \cap K = P$. Let (π_1) be the maximal ideal of R_1 and view \bar{K} as a subfield of $\bar{K}_1 = R_1/(\pi_1)$. Let T be an irreducible linear modular representation of G in \bar{K}. If T is liftable when viewed as a \bar{K}_1-representation, then T is liftable as a \bar{K}-representation.

Proof. The lemma is a consequence of the fact that the decomposition matrix of G for the prime p does not depend on K [3, Chapter 12].

Theorem 1. Let G be a finite group and suppose that $p \mid |H^2(G, E^*)|$ where E^* is the multiplicative group of an algebraic closure E of K and where G acts trivially on E^*. Let T be an irreducible linear modular representation of G in \bar{K} which is projectively liftable. Then T is liftable.

Proof. By assumption there is a projective integral representation S of G in R with factor set α such that $S(g) = T(g)$ for all $g \in G$ and $\alpha(g, h) = 1$ for all $g, h \in G$. Let e be the order of α in $H^2(G, E^*)$. Then α is equivalent to α' where $\alpha'(g, h)$ is an eth root of unity for all $g, h \in G$ [3, p. 360]. There exists a function ρ from G to E^* such that $\alpha'(g, h) = \alpha(g, h)\rho(g, h)\rho^{-1}(g)\rho^{-1}(h)$ for all $g, h \in G$. In view of Lemma 2 we may assume that $\rho(g) \in K$ for all $g \in G$. Let $\rho(g) = \pi^{r(g)}\gamma(g)$ where $\gamma(g)$ is a unit in R and $\nu(g)$ is an integer. Since $\alpha'(g, h) \neq 0$, $\alpha(g, h) \neq 0$ for all $g, h \in G$, $\nu(g) + \nu(h) = \nu(gh)$. Therefore $\alpha'(g, h) = \alpha(g, h)\gamma(gh)\gamma^{-1}(g)\gamma^{-1}(h)$ for all $g, h \in G$. Let $\gamma^{-1}(g) = \lambda(g)$ and set $Z(g) = \lambda(g)S(g)$ for all $g \in G$. Z is a projective integral representation of G in R with factor set α'. Z is projectively equivalent over \bar{K} to T. We may assume that K contains a primitive $(|\bar{K}| - 1)$-th root of
unity δ over the rationals. Define a function μ from G to the integers by $\lambda(g) = \delta^{\mu(g)}$ where $1 \leq \mu(g) \leq |K| - 1$. Set $\eta(g) = \delta^{-\mu(g)}$ and let $V(g) = \eta(g)Z(g)$. V is a projective integral representation of G in R such that $\overline{V} = T$. The factor set β associated with V satisfies

$$\beta(g, h) = \alpha'(g, h)\eta^{-1}(gh)\eta(g)\eta(h)$$

for all $g, h \in G$. Since $\beta(g, h)$ is a root of unity with $\beta(g, h) = 1$ for all $g, h \in G$, we see that $\{\beta\}$ has order ρ^b in $H^2(G, E^*)$. Since $\rho \mid H^2(G, E^*)$ by assumption, β is equivalent to the unit factor set. Therefore there is a function τ from G to E^* such that

$$\beta(g, h) = \tau(g\alpha)\tau^{-1}(g)\tau^{-1}(h)$$

for all $g, h \in G$. As before we may assume that $\tau(g) \in R$ for all $g \in G$. Let $W(g) = \tau(g)V(g)$. W is a projective integral representation of G in R and $\overline{W}(g) = \tau(g)\overline{V}(g) = \tau(g)T(g)$ for all $g \in G$. Since $\beta(g, h) = 1$ for all $g, h \in G$, \overline{W} is a linear modular representation of G in \overline{K}. Let $\overline{\tau}(g) = \overline{\delta}(g)$ where $1 \leq \theta(g) \leq |K| - 1$. Let $M(g) = \delta^{\theta(g)}W(g)$ for all $g \in G$. M is a linear integral representation of G in R and $\overline{M} = T$ and so T is liftable.

We refer the reader to [3, p. 361] for the definition and construction of a representation-group of a finite group with respect to an algebraically closed field (see also [7]). A representation-group G^* of G with respect to E is a central extension of G with kernel $A \cong H^2(G, E^*)$ with the following property: Let T be a projective representation of degree m of G in E. Then if $\{u_g: g \in G\}$ is a set of coset representatives of A in G^*, there exists a projective representation T' of G in E which is projectively equivalent to T and a linear representation S of G^* with $S(a) \in E^* \cdot 1_m$ for all $a \in A$ and $S(u_g) = T'(g)$ for all $g \in G$. If S and T' have this relationship we say that S linearizes T'. Let \overline{E} be an algebraic closure of \overline{K}. If $\rho \mid H^2(G, E^*)$, then a representation-group for G with respect to E is also one with respect to \overline{E} [1, Satz 2].

Definition. We say that G has property (ρ, m) if every irreducible linear modular representation of degree m of G in \overline{K} is liftable.

In view of Lemma 2 we see that property (ρ, m) does not depend on the splitting field chosen.

Lemma 3. Let G^* be a representation-group for G with respect to E and suppose that K is a splitting field for both G and G^*. Assume also that $\rho \mid H^2(G, E^*)$ and G^* has property (ρ, m) (with respect to \overline{K}). Let T be an absolutely irreducible projective modular representation of degree m of G in \overline{K}. Then there exists a finite extension K_1 of K such that, in the context of Lemma 2, T is projectively liftable (to an R_1-representation) when viewed as a representation of G in \overline{K}_1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. As noted above G^* is a representation-group for G with respect to both E and E. T is projectively equivalent over E to an irreducible projective representation T' of G in E, where T' is linearizable. Let S be a linear representation of G^* in E which linearizes T'. Hence there is a finite extension L of K such that the entries of $S(h)$ and $T'(g)$ lie in L for all $h \in G^*$ and all $g \in G$ and T' is projectively equivalent to T over L. In view of Lemma 1 we may assume that $T = T'$. There exists a finite extension K_1 of K containing a valuation ring R_1 with maximal ideal (π_1) such that $L = K_1 = R_1/(\pi_1)$. Since K_1 is a splitting field for G^*, G^* has property (ρ, m) with respect to K_1. S is an irreducible linear modular representation of degree m of G in K_1 and so S is liftable. Let V be a linear integral representation of G^* in R_1 with $V(h) = S(h)$ for all $h \in G^*$, G^* is a central extension of G with kernel A, say. If $a \in A$, then $S(a) = \lambda(a)1_m$ with $\lambda(a) \in K_1$. $V(a) = \mu(a)1_m$, with $\mu(a) = \lambda(a)$. Let $\{u_g : g \in G\}$ be a set of coset representatives of A in G^*. Set $U(g) = V(u_g)$ for all $g \in G$. Then U is a projective lifting of T, T being viewed as a K_1-representation. This proves the result.

Theorem 2. Let G be a finite group possessing an abelian normal subgroup A such that every proper subgroup of $B = G/A$ is p-solvable. Suppose also that $p \nmid |H^2(G, E^*)|$, $p \nmid |H^2(B, E^*)|$ and that the algebraic number field K is now a splitting field for all subquotients of G^* and B^*, where G^* and B^* are some two representation-groups of G and B respectively. If B^* possesses property (ρ, m) (with respect to K) then so does G.

Proof. Let T be an irreducible linear modular representation of degree m of G in K and let T_A denote the restriction of T to A. By Clifford's Theorem we have

$$T_A \sim e(T_1 + \cdots + T_r)$$

where T_1, \cdots, T_r are inequivalent conjugate irreducible linear representations of A in K. Since K is also a splitting field for A and A is abelian, each of the T_i's has degree one.

Case 1. $r > 1$. Let I be the inertia group of T_1 in G and view eT_1 as a representation W of I. $I \subseteq A$ and I is a proper subgroup of G so I is p-solvable. W is an irreducible linear modular representation of I in K such that $W^I \sim T$, where W^I is the induced representation of W to G [3, p. 348]. Since I is p-solvable, there exists an irreducible linear integral representation S of I in K with $S(g) = W(g)$ for all $g \in I$ [6, Theorem 6]. Let $V = S^g$, \overline{V} and $\overline{S}^g = W^g \sim T$ have the same character and the same degree. Since T is irreducible, $\overline{V} \sim T$ and so T is liftable.
Case 2. \(r = 1 \). We have \(T \sim C \times D \) (Kronecker product) where \(C, D \) are irreducible projective representations of \(G \) in \(\overline{E} \) such that \(C \) is one-dimensional and \(D(g) = 1_m \) for \(g \in A \) [3, Theorem 51.7]. Extending \(K \) if necessary, we may assume that the entries of \(C(g), D(g) \) lie in \(\overline{K} \) for all \(g \in G \), that \(T \) is equivalent to \(C \times D \) over \(\overline{K} \), and that \(D \) is projectively liftable with respect to \(\overline{K} \). We refer to Lemmas 2 and 3 to justify this step. \(C \) is projectively liftable since \(C \) is a 1-dimensional representation. Hence \(C \times D \) is projectively liftable and it follows from Theorem 1 that \(T \) is liftable.

Remark. The hypothesis that \(p \nmid H^2(G, E^*) \) is satisfied, for example, when \(G \) has a cyclic Sylow \(p \)-subgroup [5, p. 49]. If \(p \) is a prime, \(p \geq 5 \), then \(LF(2, p) \) is a minimal simple group [4, Chapter 12]. The hypotheses of Theorem 2 are satisfied when \(p \nmid |A|, B = G/A \cong LF(2, p) \) where \(p \geq 5 \), \(\overline{K} \) has characteristic \(p \), and \(m = (p - 1)/2 \) or \((p+1)/2 \) [2, p. 590].

References

4. L. Dickson, Linear groups, Leipzig, 1901.

University of California, Los Angeles