SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and polished character, for which there is no other outlet.

A UNIQUENESS THEOREM FOR CERTAIN TWO-POINT BOUNDARY VALUE PROBLEMS

JAMES S. W. WONG

We are here concerned with establishing uniqueness of solutions for the following two-point boundary value problem:

(1) \[x'' = f(t, x, x'), \quad x(a) = A, \quad x(b) = B, \]

with

(2) \[f(t, x, u) - f(t, y, v) > g(t, x - y, u - v) \quad \text{if} \quad x > y, \]

where \(g(t, z, p) \) satisfies the following: (a) the initial value problem:

(3) \[z'' = g(t, z, z'), \quad z(c) = 0, \quad z'(c) = C, \]

where \(c \geq a \) and \(C \) arbitrary, has a solution defined for all \(t \geq c \), (b) there exists a number \(h > 0 \) such that no nontrivial solution \(z(t) \) of (3) may satisfy \(z(c) = z(d) = 0 \), with \(d - c < h \), and (c) for any \(p \),

(4) \[g(t, z_1, p) \geq g(t, z_2, p) \quad \text{if} \quad z_1 \geq z_2. \]

Our main result is the following:

Theorem. Under the above assumptions, if \(b - a \leq h \), then (1) has at most one solution.

Proof. Suppose that \(x_1(t) \) and \(x_2(t) \) are two distinct solutions of (1), and write \(\psi(t) = x_1(t) - x_2(t) \). Without loss of generality, we may assume that there exist numbers \(c, d \) such that \(a \leq c < d \leq b \), \(\psi(c) = \psi(d) = 0 \) and \(\psi(t) > 0 \) for \(t \in (c, d) \). Consider the solution of (3) with initial conditions \(z(c) = 0, z'(c) = \phi'(c) \). Let \(\psi(t) = \phi(t) - z(t) \). Clearly, \(\psi(c) = \psi'(c) = 0 \). From (1), (2), and (3), observe that

\[
\psi''(c) = \phi''(c) - z''(c) \\
= x_1''(c) - x_2''(c) - z''(c) \\
= f(c, x_1(c), x_1'(c)) - f(c, x_2(c), x_2'(c)) - z''(c) \\
> g(c, 0, x_1'(c) - x_2'(c)) - g(x, 0, z'(c)) \\
= g(c, 0, \phi'(c)) - g(c, 0, z'(c)) = 0,
\]

Received by the editors November 28, 1966.

249
hence one concludes that there exists $t_0 \in (c, d)$ such that $\psi(c) = \psi(t_0) = 0$ and $\psi(t) > 0$ for $t \in (c, t_0)$. Hence there must exist a number $t_1 \in (c, t_0)$ such that $\psi'(t_1) = 0$, and $\psi''(t_1) \leq 0$. On the other hand, we note

$$\phi''(t_1) - z''(t_1) > g(t_1, \phi(t_1), \phi'(t_1)) - g(t_1, z(t_1), z'(t_1)) \geq 0,$$

which is the desired contradiction.

In the special case when $f(t, x, x') = h(t) - k(x)$ and $g(t, y, y') = -y$ for some continuous functions $h(t)$ and $k(x)$, the above theorem simplifies the hypothesis and the proof of a recent result of Marie and Tomic [1] on the Duffing problem. Our result is somewhat related to the classical problem of estimating the interval of uniqueness of (1). In contrast to the traditional approach, we impose a strict inequality (namely (2)) and obtain a larger interval of uniqueness (i.e., $b - a < h$). On the other hand, the traditional approach when $g(t, y, p)$ is linear in y and p, yields $b - a < h$ which does not cover the result of [1]. The fact that the one-sided inequality (2) plays an important role in the uniqueness theorem for (1) has also been explored by Bailey and Waltman [2], where other references may be found.

ACKNOWLEDGEMENT. Thanks are due to J. W. Macki for several stimulating discussions and D. Willett for reviving my interest in this topic.

ADDED IN PROOF. Cf. also, D. Willett, SIAM Review 9 (1967), 726–728.

REFERENCES

UNIVERSITY OF ALBERTA