THE EQUATION (/—S)g=f FOR SHIFT OPERATORS
IN HILBERT SPACE

RICHARD ROCHBERG

1. Introduction. The purpose of this paper is to establish some
conditions on f for the equation f=g—Sg to be solvable for g in a
Hilbert space, with S a shift operator on that space.

The following theorem was stated by R. Fortet [4] and proved by
M. Kac [3].

THEOREM 1. If f is a function periodic of period 1, satisfying in (0, 1)
the Holder condition of order o for some a>%, and further [3f(t)dt=0,
then the condition

1

3 f(2%) “dt =0

=0

1
(1) lim —

n—swo N 0

is necessary and sufficient for the existence of a function g in L2(0, 1)
such that

(2) @) = ¢()) — g(20) ae.

Kac’s method is to find formally the Fourier coefficients of g in (2),
use the Hélder condition on f and the condition (1) to estimate the
size of these coefficients and show that they are, in fact, the Fourier
coefficients of a function in L2(0, 1).

Z. Ciesielski has since extended the theorem to the case >0 [1].
The basic difference between Ciesielski’s approach and Kac’s is the
use of Fourier-Haar coefficients in place of Fourier coefficients.

It will be the purpose of this paper to prove a theorem about
inverting certain operators on Hilbert space. Theorem 1 will then
be shown to be an immediate consequence of our more general the-
orem. First however, we introduce some definitions and established
results.

2. Shift operators. Let H be a Hilbert space. We define a shift
operator on H as a linear isometry on H which is unitary on no non-
trivial subspace.

As an example of a shift operator let L be the subspace of L2(0, 1)
of functions whose zeroth Fourier coefficient vanishes, S the linear
operator on L defined by (Sf)(t) =f(2¢). In this context, Theorem 1
becomes a set of conditions on f for the existence of an element
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g=(I—S)"Yf in the Hilbert space L with S a specific shift operator
on L.

We now introduce some notation which will remain fixed for the
rest of the paper. S will be a shift operator on the Hilbert space H.
K will be the orthogonal complement of the range of S. For any non-
negative integer j let P; be the projection from H into the subspace
Si(K), Pi= >1_,P; and R;j=I—Pi (I, the identity on H). To
shorten formulas, for f in H, and only for f, we shall write P;(f) =f;,
Pi(f)=f%, and R;(f)=R,. The following standard result will be used
(Halmos [2]).

TueoreM 2. If S is a shift operator on the Hilbert space H, and K is
the orthogonal complement of the range of S, then H=K @& S(K) & S*(K)
@ -+ -, and SI(K) LSI(K) for 15#].

A large number of simple facts such as f=1im f7 and (f?, S**f) =0
follow immediately from the decomposition of H and our notation.
Such results will be used throughout the paper, often without men-
tion.

3. The main thoerem. We can now state the main result of
this paper.

THEOREM 3. With the above notation, let S be a shift operator on the
Hilbert space H and f an element of H. If for some 3>0

3) 171l = 6(2-#9)

then a necessary and sufficient condition for the existence of a g in H with
(I—-S)g=f1s

2

S s =o.

=0

1
4 lim —

n—wo N

The formal expansion (I—S)~'= D ;°,S' suggests that
g= D0 Si( 220 fs). Unfortunately this series does not converge.
The proof of Theorem 3 involves rearranging this series to
g= > o( D i o S*f+—+) and showing that the rearranged series con-
verges to the desired element. An alternate proof of Theorem 3 is
outlined in the next section. Before proving the theorem we will prove
four lemmas. The first two were proved by Kac [3] for the specific
case of Theorem 1.

Leyya 3.1, If f satisfies (3) then (f, S*f) = O(2=#F).

Proor. We know that f= D ., f: and that (fi, Stf;) =0 if k=471,
hence
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as was to be shown.

LemwMA 3.2. If f satisfies (3) then

1 n 2 ©
lim | 28] = [l + 2 Re 2 (f, S).
Proor.
1] & S G A o
—[ Sy =—<Z(S’f,5‘f)+2Re > <sv,sv‘>>
B | k=0 n i=0 0s1<jsn

2
=l +—Re 3 ¢, 579

0st<jsn

2 n
= Ifll2+— Re( > (n—r+ 1), S'f))
n

n 2 n
=7z +2Re X (f, 57 — ;Rez r — 1, S7)

but by the estimate of Lemma 3.1, both sums in the previous line
converge as n goes to infinity. Hence 2/n times the last sum goes to
zero. Therefore, taking the limit as # goes to infinity at the beginning
and end of the above equation we have the desired result.

LemMa 3.3: If f satisfies (3) then || Rj|| =6(2-59).

Proor: By the definition of R;, (3), and the subspace decomposi-
tion of H we have

ki 1/2 0 1/2

I8l = (S 1) = (o) = a-s.
i=j+1 i=j+1

LeEMMA 3.4: For any fin H

Z S’fr-—i

=0

> sipr|

=0

2 1
= lim —
n—sw 7N

Proor. The identity
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2

fr

P2 Re 3 (7, S) =

Z S ifr—i
i=0

can be verified by direct computation. This identity and Lemma 3.2
(applied to f7) together imply the desired result.

ProoF ofF THEOREM 3. Throughout the proof, condition (3) will
be assumed without being explicitly mentioned. The implication one
way, when g is known to exist, is trivial. For the implication in the
other direction define g, = D i_o S*/,_s. Clearly g, is in S7(K). We
shall show that Z;L(,Hgk |2< w. Hence g= D 5o g is in H. From the
definition, it is clear that g has the desired property.

By the parallelogram law we have the following identity:

2 n ) 2 1 n ) 2 1 n ) n ) 2
—| S| = — || S| + —| LS L SR
n || i=0 n 1l =0 w1l i=0 =0
2 n 12
— — I SR, || .
n il i=o

Letting 7 go to infinity in the above and using Lemma 3.4 and condi-
tion (4) of the theorem this becomes

2 n

> SR,

=0

2

. 1
— 2 lim —
n—owo M

1
2|gl|* = lim —
n—owo 7N

2 S(fr— Ry
=0

Lemma 3.2 applies to both (f"—R,) and R,, hence
Wgllz = llrr — RA2 = 2[R

+2Re 3 ((fF — Roy, SU" — RY)) — 2(R», S*R,))

— 71l = [IR2 + 2 Re 3 [(f7, 49) — (7, SR.) — (Ro, SH17)

+ (Rr, Ser) - Z(Rr; Ser)]
= I = R+ 2 Re (7, 89 = 2 Re 35 (R, )

But by Lemmas 3.2 and 3.4

n 2

2 Sk

k=0

2
= [[g|2

fr

x 1
242 Re ) (fr, S7) = lim —
k=1

n—wo N

| £ s

i=0
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Substituting this equality in the previous equation we have

T

llg:llz =

we want to show D .-||g|?< . By direct application of Lemma
3.3, 2.20/|R||2< ». Therefore we need only show

(6) Z

r=0

Using Lemma 3.3 and the fact that (Ry—R,, S*/) =0 if k>r, we see

E (Rs, SH) | < .

k=1

,,E (R, Stf) } ) (Rr, Stf) + kZI (R, S*)
Z | (R,,S"f)l + Z l (R’”Skf)l
k=r41

Z IR s+l + 3 =) [l

k=r+1

= R, + Ry
I (AR + 5 l1Rd)
= Il zo@) + o(2-#cr+vy).

Hence the sum in (6) is finite and the proof is completed.

4. A proof of Theorem 1 and related results. First we introduce
some notation. Following Zygmund’s notation [6, pp. 42-49] we
define A% as the set of functions f in L?(0, 1), 1 <p < « for which

sup 7Gx+ k) — f@)]|, = O@).

In this notation the Hélder condition of order « on f is equivalent to
f's being in A;. We can now prove the following theorem.

THEOREM 4. Let f(t) be a periodic function of period 1, a, the nth
Fourier coefficient of f. If [of(t)dt=0, and if either

a. Z;;—N l a(2k+1)2i| 2= 0(2_‘“.) fO?' some a>0, or
b. f is in A% for some a>0, or
c. fisin AL for some p=1, and a>1, or
d. fisin AL for some p=1, and a>0,
and the Fourier series of f is lacunary;

(M

then the conclusion of Theorem 1 holds, that is, (1) is a necessary and
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sufficient condition for (2). (Note that Theorem 1 is just case c above with
p="w.)

ProoF. This theorem follows from Theorem 3 applied to the space
L2(0, 1) and the operator S which maps f(¢) to f(2¢). The restriction
Jof(©)dt=0 merely restricts attention to the subspace L of L2(0, 1)
described earlier on which S is a shift. Note that (1) is just the explicit
form of (4) for the specific shift operator under consideration and
that (7) is just the explicit form of (3). That is, f; is the function with
mth Fourier coefficient equal to a. if m =%2? with k£ odd and equal to
zero otherwise. Thus part a of Theorem 4 is just a direct restatement
of Theorem 3. (Note that if f satisfies (7) then fis in L2(0, 1).) Hence
it suffices to show that conditions b, ¢, and d each imply condition a.
It can be shown that if f is in A}, then a, = 0([ nl -<) (e.g. Zygmund [6,
pp. 42-49]). This fact and a direct estimate shows that d implies a.
That c implies b is known (Taibleson [5, p. 478]). If f satisfies b then
a,.=0(|nl'°’) and E:,_.,Ia,,l"<oo for some 8<2 (Zygmund [6,
p. 296]). These two facts imply D m_u|as|2|n|?*< o for some
v >0 which implies a. Thus b implies a and the proof is finished.

Theorem 4 generalizes Theorem 1 by relaxing the Hélder condition.
A second direction in which Theorem 1 can be extended is to shift
operators other than (Sf)(#) =f(2¢) and to spaces other than L. For
the operator .S, defined on L2(0, 1) by (S.f)(t) =f(nt) the generaliza-
tion of Theorem 1 is immediate. If the space is the Hardy space H?
and S is multiplication by z, i.e., (Sf)(2) =32f(z), Theorem 3 gives a
(disappointingly trivial) condition for f(z)/(1 —2) to be in H? if f(2) is;
viz., if the power series for f(z) has a radius of convergence greater
than 1, then f(2)/(1—2) is in H?if and only if f(1) =0. However, this
trivial corollary suggests an alternate proof of Theorem 3. Identify
H with H%(K), the space of K-valued analytic functions with square
summable Taylor coefficients. (3) then implies that f(z) is analytic in
a disk of radius r>1. In this case f(z) =g(2) —2g(z) can be solved for
g(2) in H*(K) if and only if f(1) =0. But f(1) =0 is equivalent to (4).

If the space is L2(T*), L? of the n dimensional torus R*/Z", then
a fairly large class of isometries is generated by the nonsingular # by
n matrices with integer coefficients acting in the following manner.
Let M be such a matrix and f(#, - - -, t.) =f(¢) an element of L*(T™).
The mapping S defined by (Suf)(¢) =f(M(¢)) is a linear isometry on
L2(T™). It can be shown (Halmos [2]) that any isometry of a Hilbert
space can be decomposed into the direct sum of a unitary operator
and a shift operator. Theorem 3 can then be applied in a straightfor-
ward manner to the shift component. In fact, Theorem 1 is just a
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special case of this with n=1, M =(2) and the subspace of L2(0, 1)
on which M is a shift operator is the space we have been calling L.
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