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1. Introduction. The purpose of this paper is to establish some

conditions on / for the equation /=g — Sg to be solvable for g in a

Hilbert space, with S a shift operator on that space.

The following theorem was stated by R. Fortet [4] and proved by

M. Kac [3].

Theorem 1. 1/ /is a function periodic of period 1, satisfying in (0, 1)

the Holder condition of order a for some a>§, awd further flf(t)dt = Q,

then the condition

1   r 1\   " 2
(1) lim — I      Z/(2*0    dt = 0

n->«    n J o   I »'=0

is necessary and sufficient for the existence of a function g in L2(0, 1)

such that

(2) f(l) = g(t) - g(2t)    a.e.

Kac's method is to find formally the Fourier coefficients of g in (2),

use the Holder condition on/ and the condition (1) to estimate the

size of these coefficients and show that they are, in fact, the Fourier

coefficients of a function in 72(0, 1).

Z. Ciesielski has since extended the theorem to the case a>0 [l].

The basic difference between Ciesielski's approach and Kac's is the

use of Fourier-Haar coefficients in place of Fourier coefficients.

It will be the purpose of this paper to prove a theorem about

inverting certain operators on Hilbert space. Theorem 1 will then

be shown to be an immediate consequence of our more general the-

orem. First however, we introduce some definitions and established

results.

2. Shift operators. Let 77 be a Hilbert space. We define a shift

operator on 77 as a linear isometry on 77 which is unitary on no non-

trivial subspace.

As an example of a shift operator let L be the subspace of 72(0, 1)

of functions whose zeroth Fourier coefficient vanishes, 5 the linear

operator on L defined by (Sf)(t) =f(2t). In this context, Theorem 1

becomes a set of conditions on / for the existence of an element
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g= (2 — S)-1/ in the Hilbert space L with S a specific shift operator

on L.

We now introduce some notation which will remain fixed for the

rest of the paper. 5 will be a shift operator on the Hilbert space H.

K will be the orthogonal complement of the range of S. For any non-

negative integer j let Pj he the projection from H into the subspace

S'iK), P'= zZi-oPi, and Rj = I-P* (2, the identity on H). To
shorten formulas, for/ in H, and only for/, we shall write Pjif) =fj,

P'if)=f', and Rjif)=Rj. The following standard result will be used

(Halmos  [2]).

Theorem 2. If S is a shift operator on the Hilbert space H, and K is

the orthogonal complement of the range of S, then H = K © SiK) © S2iK)

© • • ■ ,and S'iK) ±S'iK) for i^j.

A large number of simple facts such as /=lim f' and (f*, Si+1f) =0

follow immediately from the decomposition of H and our notation.

Such results will be used throughout the paper, often without men-

tion.

3. The main thoerem.  We can now state  the main result of

this paper.

Theorem 3. With the above notation, let S be a shift operator on the

Hilbert space H and f an element of H. If for some fi > 0

(3) 11/11 = 0(2"")

then a necessary and sufficient condition for the existence of a g in H with

iI-S)g=fis'

1 n 2

(4) lim —   zZ S(f     = 0.
n->»    M      ,=o

The formal expansion (2 — S)~1 = zZi°=o S* suggests that

g= zZ'-o S'izZj'-ofj)- Unfortunately this series does not converge.

The proof of Theorem 3 involves rearranging this series to

g= zZrLoi 22t=o Skfr-k) and showing that the rearranged series con-

verges to the desired element. An alternate proof of Theorem 3 is

outlined in the next section. Before proving the theorem we will prove

four lemmas. The first two were proved by Kac [3] for the specific

case of Theorem 1.

Lemma 3.1. Iff satisfies (3) then (f, Skf) = 0(2""*).

Proof. We know that/= zZ?= o/< and that (fi, Skfj) =0 if k+j¥^i,

hence
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I if, skf) i = jb (/i, sk/i-k) ̂  f: \\/i\\ \\sk/i-k\\
i=k »™A

oo /co \ 1/2 /    co \ 1/2

= E|[/*IIIMIs(EIMI')  (ZIIMI2)
i-k \ i=k /        \ i-k /

= 11/11 (E0(2-")2)'" = 0(2-*)

as was to be shown.

Lemma 3.2. If f satisfies (3) then

lim -   Z Skf    = ll/H2 + 2 Re £ (/, 5*/).
»-»■»    «       4=0 4=1

Proof.

- i: 5*/2=- (i: (5% 5*0 + 2 Re z $% s^)

= ||/||* + -Re    £    (/,S--/)
w Os«isn

= ||/||s + - Re( £ (ff - r + 1)(/, S'/))
ff \  r=l /

= 11/112 + 2 Re £ (/, S'/) - - Re £(r - 1)(/, Sf)
r=i n        r=i

but by the estimate of Lemma 3.1, both sums in the previous line

converge as w goes to infinity. Hence 2/« times the last sum goes to

zero. Therefore, taking the limit as w goes to infinity at the beginning

and end of the above equation we have the desired result.

Lemma 3.3:1// satisfies (3) then ||icy|| =0(2~w)-

Proof: By the definition of Rjt (3), and the subspace decomposi-

tion of 77 we have

W = (   Z  II/.-II1)      =(   IO(2-")!        =»(2H»0.

Lemma 3.4: For any f in 77

r 2 11" *

£ S%-i     =  lim —   £ ST    ■

Proof. The identity
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IH|2 +2 Re £(/',£*/')=    zZS<fT-i
4=1 t'=0

can be verified by direct computation. This identity and Lemma 3.2

(applied to/r) together imply the desired result.

Proof of Theorem 3. Throughout the proof, condition (3) will

be assumed without being explicitly mentioned. The implication one

way, when g is known to exist, is trivial. For the implication in the

other direction define gr= zZt=oSkfr-k. Clearly gT is in SriK). We

shall show that Si°.o||g*||2< °°. Hence g= Ej°-o 2* 's m ^- ^TOm the

definition, it is clear that g has the desired property.

By the parallelogram law we have the following identity:

2 " 2 1 n 12 J B n 2

— IZst   =— zZs'fl +— zZs'f-zZs'Rr
n     i=o n    i=o       \ n    ,=0 «=o

2      ™ 2
-zZS'Rr       ■

n    ,_o

Letting n go to infinity in the above and using Lemma 3.4 and condi-

tion (4) of the theorem this becomes

2||gr||2 =   lim —   JZSKF - Rr)     - 2 lim — I zZS'Rr   ■
B-.oo    n       ,=o n-»»    M    I  ,=o

Lemma 3.2 applies to both (fr — Rr) and Rr, hence

2|kr||2 = ll/-2?r||2-2||2?r||2

+ 2 Re £ ((/> - Rr, 5*(/r - Rr)) ~ 2iRr, SkRr))
k=l

= ||/i|2 - ||2?r[|2 + 2 Re JZ [(/r, S*f) - if, SkRr) - (2?r, Skf)
k^l

+ iRr,SkRr) - 2iRr,SkRr)]

= ll/il2 - IWI2 + 2 Re E if, Skf) - 2 Re E (2?r, 5*/).
*=i *=i

But by Lemmas 3.2 and 3.4

co 1 n 2

||/i|2 + 2 Re £ (/', SW =  lim -   £ Skf
4=1 »-»«•    M      *=0

r 2

=     V W    ■     = He II2
i=0
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Substituting this equality in the previous equation we have

||gr||*= -\\Rr\\2-2ReJ2(RT,Skf).
4-1

we want to show  £r"o||gr||2< °° • By direct application of Lemma

3.3, £r"ol|-^>-||2< °°- Therefore we need only show

(6) £    Z(Rr,Skf)    <  =0.
r-0    4=1

Using Lemma 3.3 and the fact that (Rk — Rr, Skf) =0 if k>r, we see

Z(Rr,Skf)     =     Z(Rr,Skf)+     £    (Rr,Skf)
4=1 4=1 4=r+l

r co

^£ \(Rr,Skf)\+  £   \(Rk,Skf)\
4=1 4=r+l

=   Z||*r||||5V||+    £    ||«t||  ||5*/||
4=1 4=r+l

= 11/11 (r\\Rr\\+   £   ||^4||)

= ll/H (rO(2H»r) + 0(2H»(H-i))).

Hence the sum in (6) is finite and the proof is completed.

4. A proof of Theorem 1 and related results. First we introduce

some notation. Following Zygmund's notation [6, pp. 42-49] we

define A„ as the set of functions/ in Lp(0, 1), 1 ^p^ °o for which

sup  \\f(x+h)-f(x)\\p = 0(8-").

In this notation the Holder condition of order a on/ is equivalent to

/'s being in A". We can now prove the following theorem.

Theorem 4. Let f(t) be a periodic function of period 1, an the nth

Fourier coefficient of f. If flf(t)dt = 0, and if either

a.   £*"=-»| a(24+i)2*|2 = 0(2~ai) for some a>0, or

,»* b. / is in A2, for some a > 0, or

c. / is in Avafor some p^l, and a>§, or

d. f is in A£ for some p^l, and a > 0,

and the Fourier series of f is lacunary;

then the conclusion of Theorem 1 holds, that is, (1) is a necessary and
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sufficient condition for (2). iNote that Theorem 1 is just case c above with

£=00.)

Proof. This theorem follows from Theorem 3 applied to the space

Z,2(0, 1) and the operator 5 which maps/0) to/(2/). The restriction

flfit)dt = Q merely restricts attention to the subspace L of Z,2(0, 1)

described earlier on which S is a shift. Note that (1) is just the explicit

form of (4) for the specific shift operator under consideration and

that (7) is just the explicit form of (3). That is,/i is the function with

mth Fourier coefficient equal to am if m = k2l with k odd and equal to

zero otherwise. Thus part a of Theorem 4 is just a direct restatement

of Theorem 3. (Note that if/satisfies (7) then/ is in Z,2(0, 1).) Hence

it suffices to show that conditions b, c, and d each imply condition a.

It can be shown that if/is in A£ thenaB = 0(|M|~a) (e.g. Zygmund [6,

pp. 42-49]). This fact and a direct estimate shows that d implies a.

That c implies b is known (Taibleson [5, p. 478]). If / satisfies b then

an = Oi\n\~") and £„"=_«,| a„|"< co for some fi<2 (Zygmund [6,

p. 296]). These two facts imply £„__„|aB| 2| n\ 2y< °° for some

7>0 which implies a. Thus b implies a and the proof is finished.

Theorem 4 generalizes Theorem 1 by relaxing the Holder condition.

A second direction in which Theorem 1 can be extended is to shift

operators other than iSf) it) =fi2t) and to spaces other than L. For

the operator Sn defined on 2.2(0, 1) by iSnf)it) =fint) the generaliza-

tion of Theorem 1 is immediate. If the space is the Hardy space H2

and S is multiplication by z, i.e., (5/)(z) = 2/(2), Theorem 3 gives a

(disappointingly trivial) condition for/(z)/(l —z) to be in H2 iifiz) is;

viz., if the power series for/(2) has a radius of convergence greater

than 1, then/(z)/(l —2) is in 222 if and only if /(l) =0. However, this

trivial corollary suggests an alternate proof of Theorem 3. Identify

H with H2iK), the space of K-valued analytic functions with square

summable Taylor coefficients. (3) then implies that/(2) is analytic in

a disk of radius r>l. In this case/(z)=g(z)— 2^(2) can be solved for

giz) in H2iK) if and only if/(l) =0. But/(1) =0 is equivalent to (4).

If the space is L2CTn), L2 of the n dimensional torus Rn/Zn, then

a fairly large class of isometries is generated by the nonsingular n by

m matrices with integer coefficients acting in the following manner.

Let M he such a matrix and/Oi, • • • ,tn) —fit) an element of L2CTn).

The mapping Sm defined by iSMf)it) =/(iW(/)) is a linear isometry on

L2iT"). It can be shown (Halmos [2]) that any isometry of a Hilbert

space can be decomposed into the direct sum of a unitary operator

and a shift operator. Theorem 3 can then be applied in a straightfor-

ward manner to the shift component. In fact, Theorem 1 is just a
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special case of this with « = 1, ilf =(2) and the subspace of 7,2(0, 1)

on which M is a shift operator is the space we have been calling L.
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