THE EQUATION (I-S)g=f FOR SHIFT OPERATORS IN HILBERT SPACE

RICHARD ROCHBERG

1. **Introduction.** The purpose of this paper is to establish some conditions on f for the equation f = g - Sg to be solvable for g in a Hilbert space, with S a shift operator on that space.

The following theorem was stated by R. Fortet [4] and proved by M. Kac [3].

THEOREM 1. If f is a function periodic of period 1, satisfying in (0, 1) the Hölder condition of order α for some $\alpha > \frac{1}{2}$, and further $\int_0^1 f(t)dt = 0$, then the condition

(1)
$$\lim_{n \to \infty} \frac{1}{n} \int_{0}^{1} \left| \sum_{i=0}^{n} f(2^{i}t) \right|^{2} dt = 0$$

is necessary and sufficient for the existence of a function g in $L^2(0, 1)$ such that

(2)
$$f(t) = g(t) - g(2t)$$
 a.e.

Kac's method is to find formally the Fourier coefficients of g in (2), use the Hölder condition on f and the condition (1) to estimate the size of these coefficients and show that they are, in fact, the Fourier coefficients of a function in $L^2(0, 1)$.

Z. Ciesielski has since extended the theorem to the case $\alpha > 0$ [1]. The basic difference between Ciesielski's approach and Kac's is the use of Fourier-Haar coefficients in place of Fourier coefficients.

It will be the purpose of this paper to prove a theorem about inverting certain operators on Hilbert space. Theorem 1 will then be shown to be an immediate consequence of our more general theorem. First however, we introduce some definitions and established results.

2. Shift operators. Let H be a Hilbert space. We define a *shift* operator on H as a linear isometry on H which is unitary on no non-trivial subspace.

As an example of a shift operator let L be the subspace of $L^2(0, 1)$ of functions whose zeroth Fourier coefficient vanishes, S the linear operator on L defined by (Sf)(t) = f(2t). In this context, Theorem 1 becomes a set of conditions on f for the existence of an element

Received by the editors November 19, 1966.

 $g = (I - S)^{-1}f$ in the Hilbert space L with S a specific shift operator on L.

We now introduce some notation which will remain fixed for the rest of the paper. S will be a shift operator on the Hilbert space H. K will be the orthogonal complement of the range of S. For any nonnegative integer j let P_j be the projection from H into the subspace $S^j(K)$, $P^j = \sum_{i=0}^j P_i$, and $R_j = I - P^j$ (I, the identity on H). To shorten formulas, for f in H, and only for f, we shall write $P_j(f) = f_j$, $P^j(f) = f^j$, and $R_j(f) = R_j$. The following standard result will be used (Halmos [2]).

THEOREM 2. If S is a shift operator on the Hilbert space H, and K is the orthogonal complement of the range of S, then $H = K \oplus S(K) \oplus S^2(K) \oplus \cdots$, and $S^i(K) \perp S^j(K)$ for $i \neq j$.

A large number of simple facts such as $f = \lim_i f^i$ and $(f^i, S^{i+1}f) = 0$ follow immediately from the decomposition of H and our notation. Such results will be used throughout the paper, often without mention.

3. **The main thoerem.** We can now state the main result of this paper.

THEOREM 3. With the above notation, let S be a shift operator on the Hilbert space H and f an element of H. If for some $\beta > 0$

$$||f_j|| = \theta(2^{-\beta j})$$

then a necessary and sufficient condition for the existence of a g in H with (I-S)g=f is

(4)
$$\lim_{n\to\infty} \frac{1}{n} \left\| \sum_{i=0}^{n} S^{i} f \right\|^{2} = 0.$$

The formal expansion $(I-S)^{-1} = \sum_{i=0}^{\infty} S^i$ suggests that $g = \sum_{i=0}^{\infty} S^i (\sum_{j=0}^{\infty} f_j)$. Unfortunately this series does not converge. The proof of Theorem 3 involves rearranging this series to $g = \sum_{r=0}^{\infty} (\sum_{k=0}^{r} S^k f_{r-k})$ and showing that the rearranged series converges to the desired element. An alternate proof of Theorem 3 is outlined in the next section. Before proving the theorem we will prove four lemmas. The first two were proved by Kac [3] for the specific case of Theorem 1.

LEMMA 3.1. If f satisfies (3) then $(f, S^k f) = O(2^{-\beta k})$.

PROOF. We know that $f = \sum_{i=0}^{\infty} f_i$ and that $(f_i, S^k f_j) = 0$ if $k + j \neq i$,

$$| (f, S^{k}f) | = \left| \sum_{i=k}^{\infty} (f_{i}, S^{k}f_{i-k}) \right| \leq \sum_{i=k}^{\infty} ||f_{i}|| \, ||S^{k}f_{i-k}||$$

$$= \sum_{i=k}^{\infty} ||f_{i}|| \, ||f_{i-k}|| \leq \left(\sum_{i=k}^{\infty} ||f_{i-k}||^{2} \right)^{1/2} \left(\sum_{i=k}^{\infty} ||f_{i}||^{2} \right)^{1/2}$$

$$\leq ||f|| \left(\sum_{i=k}^{\infty} O(2^{-\beta i})^{2} \right)^{1/2} = O(2^{-\beta k})$$

as was to be shown.

LEMMA 3.2. If f satisfies (3) then

$$\lim_{n \to \infty} \frac{1}{n} \left\| \sum_{k=0}^{n} S^{k} f \right\|^{2} = \|f\|^{2} + 2 \operatorname{Re} \sum_{k=1}^{\infty} (f, S^{k} f).$$

Proof.

$$\frac{1}{n} \left\| \sum_{k=0}^{n} S^{k} f \right\|^{2} = \frac{1}{n} \left(\sum_{i=0}^{n} \left(S^{i} f, S^{i} f \right) + 2 \operatorname{Re} \sum_{0 \le i < j \le n} \left(S^{i} f, S^{j} f \right) \right)$$

$$= \left\| f \right\|^{2} + \frac{2}{n} \operatorname{Re} \sum_{0 \le i < j \le n} \left(f, S^{j-i} f \right)$$

$$= \left\| f \right\|^{2} + \frac{2}{n} \operatorname{Re} \left(\sum_{r=1}^{n} \left(n - r + 1 \right) (f, S^{r} f) \right)$$

$$= \left\| f \right\|^{2} + 2 \operatorname{Re} \sum_{r=1}^{n} \left(f, S^{r} f \right) - \frac{2}{n} \operatorname{Re} \sum_{r=1}^{n} \left(r - 1 \right) (f, S^{r} f)$$

but by the estimate of Lemma 3.1, both sums in the previous line converge as n goes to infinity. Hence 2/n times the last sum goes to zero. Therefore, taking the limit as n goes to infinity at the beginning and end of the above equation we have the desired result.

LEMMA 3.3: If f satisfies (3) then
$$||R_i|| = \theta(2^{-\beta j})$$
.

PROOF: By the definition of R_j , (3), and the subspace decomposition of H we have

$$||R_j|| = \left(\sum_{i=j+1}^{\infty} ||f_i||^2\right)^{1/2} = \left(\sum_{i=j+1}^{\infty} O(2^{-\beta i})^2\right)^{1/2} = \theta(2^{-\beta j}).$$

LEMMA 3.4: For any f in H

$$\left\| \sum_{i=0}^{r} S^{i} f_{r-i} \right\|^{2} = \lim_{n \to \infty} \frac{1}{n} \left\| \sum_{i=0}^{n} S^{i} f^{r} \right\|^{2}.$$

Proof. The identity

$$||f^r||^2 + 2 \operatorname{Re} \sum_{k=1}^{\infty} (f^r, S^k f^r) = \left\| \sum_{i=0}^{r} S^i f_{r-i} \right\|^2$$

can be verified by direct computation. This identity and Lemma 3.2 (applied to f^r) together imply the desired result.

PROOF OF THEOREM 3. Throughout the proof, condition (3) will be assumed without being explicitly mentioned. The implication one way, when g is known to exist, is trivial. For the implication in the other direction define $g_r = \sum_{k=0}^r S^k f_{r-k}$. Clearly g_r is in $S^r(K)$. We shall show that $\sum_{k=0}^{\infty} ||g_k||^2 < \infty$. Hence $g = \sum_{k=0}^{\infty} g_k$ is in H. From the definition, it is clear that g has the desired property.

By the parallelogram law we have the following identity:

$$\frac{2}{n} \left\| \sum_{i=0}^{n} S^{i} f^{r} \right\|^{2} = \frac{1}{n} \left\| \sum_{i=0}^{n} S^{i} f \right\|^{2} + \frac{1}{n} \left\| \sum_{i=0}^{n} S^{i} f^{r} - \sum_{i=0}^{n} S^{i} R_{r} \right\|^{2} - \frac{2}{n} \left\| \sum_{i=0}^{n} S^{i} R_{r} \right\|^{2}.$$

Letting n go to infinity in the above and using Lemma 3.4 and condition (4) of the theorem this becomes

$$2\|g_r\|^2 = \lim_{n \to \infty} \frac{1}{n} \left\| \sum_{i=0}^n S^i(f^r - R_r) \right\|^2 - 2 \lim_{n \to \infty} \frac{1}{n} \left\| \sum_{i=0}^n S^i R_r \right\|^2.$$

Lemma 3.2 applies to both $(f^r - R_r)$ and R_r , hence

$$2||g_{r}||^{2} = ||f^{r} - R_{r}||^{2} - 2||R_{r}||^{2}$$

$$+ 2 \operatorname{Re} \sum_{k=1}^{\infty} ((f^{r} - R_{r}, S^{k}(f^{r} - R_{r})) - 2(R_{r}, S^{k}R_{r}))$$

$$= ||f^{r}||^{2} - ||R_{r}||^{2} + 2 \operatorname{Re} \sum_{k=1}^{\infty} [(f^{r}, S^{k}f^{r}) - (f^{r}, S^{k}R_{r}) - (R_{r}, S^{k}f^{r}) + (R_{r}, S^{k}R_{r}) - 2(R_{r}, S^{k}R_{r})]$$

$$= ||f^{r}||^{2} - ||R_{r}||^{2} + 2 \operatorname{Re} \sum_{k=1}^{\infty} (f^{r}, S^{k}f^{r}) - 2 \operatorname{Re} \sum_{k=1}^{\infty} (R_{r}, S^{k}f).$$

But by Lemmas 3.2 and 3.4

$$||f^{r}||^{2} + 2 \operatorname{Re} \sum_{k=1}^{\infty} (f^{r}, S^{k}f^{r}) = \lim_{n \to \infty} \frac{1}{n} \left\| \sum_{k=0}^{n} S^{k}f^{r} \right\|^{2}$$
$$= \left\| \sum_{i=0}^{r} S^{i}f_{r-i} \right\|^{2} = ||g_{r}||^{2}.$$

Substituting this equality in the previous equation we have

$$||g_r||^2 = -||R_r||^2 - 2 \operatorname{Re} \sum_{k=1}^{\infty} (R_r, S^k f).$$

we want to show $\sum_{r=0}^{\infty} ||g_r||^2 < \infty$. By direct application of Lemma 3.3, $\sum_{r=0}^{\infty} ||R_r||^2 < \infty$. Therefore we need only show

(6)
$$\sum_{r=0}^{\infty} \left| \sum_{k=1}^{\infty} (R_r, S^k f) \right| < \infty.$$

Using Lemma 3.3 and the fact that $(R_k - R_r, S^k f) = 0$ if k > r, we see

$$\left| \sum_{k=1}^{\infty} (R_r, S^k f) \right| = \left| \sum_{k=1}^{r} (R_r, S^k f) + \sum_{k=r+1}^{\infty} (R_r, S^k f) \right|$$

$$\leq \sum_{k=1}^{r} \left| (R_r, S^k f) \right| + \sum_{k=r+1}^{\infty} \left| (R_k, S^k f) \right|$$

$$\leq \sum_{k=1}^{r} ||R_r|| ||S^k f|| + \sum_{k=r+1}^{\infty} ||R_k|| ||S^k f||$$

$$= ||f|| \left(r ||R_r|| + \sum_{k=r+1}^{\infty} ||R_k|| \right)$$

$$= ||f|| (r O(2^{-\beta r}) + O(2^{-\beta(r+1)})).$$

Hence the sum in (6) is finite and the proof is completed.

4. A proof of Theorem 1 and related results. First we introduce some notation. Following Zygmund's notation [6, pp. 42-49] we define Λ^p_α as the set of functions f in $L^p(0, 1)$, $1 \le p \le \infty$ for which

$$\sup_{0 \le h \le \delta} ||f(x+h) - f(x)||_{p} = O(\delta^{-\alpha}).$$

In this notation the Hölder condition of order α on f is equivalent to f's being in $\Lambda_{\alpha}^{\infty}$. We can now prove the following theorem.

THEOREM 4. Let f(t) be a periodic function of period 1, a_n the nth Fourier coefficient of f. If $\int_0^1 f(t)dt = 0$, and if either

(7) a.
$$\sum_{k=-\infty}^{\infty} |a_{(2k+1)2}i|^2 = O(2^{-\alpha i}) \text{ for some } \alpha > 0, \text{ or}$$
b. f is in Λ_{α}^{p} for some $\alpha > 0$, or
c. f is in Λ_{α}^{p} for some $p \ge 1$, and $\alpha > \frac{1}{2}$, or
d. f is in Λ_{α}^{p} for some $p \ge 1$, and $\alpha > 0$,
and the Fourier series of f is lacunary;

then the conclusion of Theorem 1 holds, that is, (1) is a necessary and

sufficient condition for (2). (Note that Theorem 1 is just case c above with $b = \infty$.)

PROOF. This theorem follows from Theorem 3 applied to the space $L^2(0, 1)$ and the operator S which maps f(t) to f(2t). The restriction $\int_0^1 f(t) dt = 0$ merely restricts attention to the subspace L of $L^2(0, 1)$ described earlier on which S is a shift. Note that (1) is just the explicit form of (4) for the specific shift operator under consideration and that (7) is just the explicit form of (3). That is, f_i is the function with mth Fourier coefficient equal to a_m if $m = k2^i$ with k odd and equal to zero otherwise. Thus part a of Theorem 4 is just a direct restatement of Theorem 3. (Note that if f satisfies (7) then f is in $L^2(0, 1)$.) Hence it suffices to show that conditions b, c, and d each imply condition a. It can be shown that if f is in Λ^p_a then $a_n = O(|n|^{-\alpha})$ (e.g. Zygmund [6, pp. 42-49]). This fact and a direct estimate shows that d implies a. That c implies b is known (Taibleson [5, p. 478]). If f satisfies b then $a_n = O(|n|^{-\alpha})$ and $\sum_{n=-\infty}^{\infty} |a_n|^{\beta} < \infty$ for some $\beta < 2$ (Zygmund [6, p. 296]). These two facts imply $\sum_{n=-\infty}^{\infty} |a_n|^2 |n|^{2\gamma} < \infty$ for some $\gamma > 0$ which implies a. Thus b implies a and the proof is finished.

Theorem 4 generalizes Theorem 1 by relaxing the Hölder condition. A second direction in which Theorem 1 can be extended is to shift operators other than (Sf)(t) = f(2t) and to spaces other than L. For the operator S_n defined on $L^2(0, 1)$ by $(S_n f)(t) = f(nt)$ the generalization of Theorem 1 is immediate. If the space is the Hardy space H^2 and S is multiplication by z, i.e., (Sf)(z) = zf(z), Theorem 3 gives a (disappointingly trivial) condition for f(z)/(1-z) to be in H^2 if f(z) is; viz., if the power series for f(z) has a radius of convergence greater than 1, then f(z)/(1-z) is in H^2 if and only if f(1) = 0. However, this trivial corollary suggests an alternate proof of Theorem 3. Identify H with $H^2(K)$, the space of K-valued analytic functions with square summable Taylor coefficients. (3) then implies that f(z) is analytic in a disk of radius r > 1. In this case f(z) = g(z) - zg(z) can be solved for g(z) in $H^2(K)$ if and only if f(1) = 0. But f(1) = 0 is equivalent to (4).

If the space is $L^2(T^n)$, L^2 of the n dimensional torus R^n/Z^n , then a fairly large class of isometries is generated by the nonsingular n by n matrices with integer coefficients acting in the following manner. Let M be such a matrix and $f(t_1, \dots, t_n) = f(t)$ an element of $L^2(T^n)$. The mapping S_M defined by $(S_M f)(t) = f(M(t))$ is a linear isometry on $L^2(T^n)$. It can be shown (Halmos [2]) that any isometry of a Hilbert space can be decomposed into the direct sum of a unitary operator and a shift operator. Theorem 3 can then be applied in a straightforward manner to the shift component. In fact, Theorem 1 is just a

special case of this with n=1, M=(2) and the subspace of $L^2(0, 1)$ on which M is a shift operator is the space we have been calling L.

REFERENCES

- 1. Z. Ciesielski, On the functional equation f(t) = g(t) g(2t), Proc. Amer. Math. Soc. 13 (1962), 388-392.
 - 2. P. Halmos, Shifts on Hilbert spaces, J. Reine Angew. Math. 208 (1961), 102-112.
- 3. M. Kac, On the distribution of values of sums of type $\Sigma f(2^k t)$, Ann. of Math. 47 (1946), 33-49.
 - 4. R. Fortet, Sur une suite egalement répartie, Studia Math. 9 (1940), 54-69.
- 5. M. H. Taibleson, On the theory of Lipschitz spaces of distributions on euclidean n-space. I. Principal properties, J. Math. Mech. 13 (1964), 407-480.
- 6. A. Zygmund, Trigonometric series, 2nd ed., Vol. 1, Cambridge Univ. Press, 1959.

PRINCETON UNIVERSITY