NONGENERATORS OF RINGS

HOMER BECHTELL

The purpose of this note is to examine the role of nongenerators in the theory of rings, i.e. the elements \(x \) of a ring \(R \) such that for each subset \(M \) of \(R \) for which \(R = \langle x, M \rangle \), then \(\langle M \rangle = R \). The approach used considers a ring as a group with multiple operators and consequently an ideal \(A \) generated by a subset \(S \) implies that \(S \subseteq A \). These results will include those of L. Fuchs [1] and A. Kertesz [2] whenever the ring has unity.

Unless otherwise indicated, the terminology and the necessary known results may be found in N. McCoy’s text [3].

Denote the ideal (right ideal) generated by the set \(M \) of \(R \) by \(\langle M \rangle \) (\((M)r \)).

Definition. An element \(x \in A \) is a generator of an ideal (right ideal) \(A \) in a ring \(R \) provided that there is a subset \(M \) of \(A \) such that \(A = \langle x, M \rangle \) \((A = \langle x, M \rangle_r) \) and \(\langle M \rangle \subseteq A \) \((\langle M \rangle_r \subseteq A) \) properly. Otherwise \(x \) is called a nongenerator of \(A \). (Note that \(M \) may be empty.)

The set of nongenerators of an ideal (right ideal) \(A \) in a ring \(R \) will be denoted by \(\Phi (\Phi_r) \), respectively.

Immediate consequences of the definition are the following:
(i) For an element \(x \) of a ring \(R \), \(x \in \Phi (x \in \Phi_r) \) if and only if \(\langle x \rangle \subseteq \Phi (\langle x \rangle_r \subseteq \Phi_r) \).
(ii) In a ring \(R \), \(\Phi \) is an ideal and \(\Phi_r \) is a right ideal.

Throughout this paper a maximal ideal of a ring \(R \) will be a proper ideal of \(R \) that is not contained in another proper ideal of \(R \). Similarly for maximal right (left) ideals.

(iii) In a ring \(R \), \(\Phi (\Phi_r) \) is the intersection of the maximal ideals (right ideals), if they exist, and is \(R \) otherwise.
(iv) For a ring \(R \) and homomorphism \(\theta \) of \(R \), \(\Phi \theta \subseteq \Phi (R \theta) \) and \(\Phi_r \theta \subseteq \Phi_r (R \theta) \).
(v) For an ideal \(A \) of a ring \(R \), \(A \subseteq \Phi \) implies that \(\Phi (R/A) = \Phi /A \) and \(A \subseteq \Phi_r \) implies that \(\Phi_r (R/A) = \Phi_r /A \).
(vi) For a ring \(R \), if \(A \) is an ideal (right ideal) of \(R \), then \(\Phi (A) \subseteq \Phi (\Phi_r (A) \subseteq \Phi_r) \).
(vii) In a ring \(R \), \(\Phi = \langle 0 \rangle \) (\(\Phi_r = \langle 0 \rangle \)) implies that \(\Phi (A) = \langle 0 \rangle \) (\(\Phi_r (A) = \langle 0 \rangle \)) for each ideal (right ideal) \(A \) of \(R \). Such rings will be called \(\Phi \)-free or \(\Phi_r \)-free respectively.

Received by the editors December 4, 1966.
(viii) In a ring R, $A = \Phi(A)$ ($A = \Phi_r(A)$) for an ideal (right ideal) A of R implies that $A \subseteq \Phi_r(A)$.

(ix) If R is a ring and $R = M_1 \oplus \cdots \oplus M_n$, then $\Phi = \Phi(M_1) \oplus \cdots \oplus \Phi(M_n)$ for ideals M_i of R.

(x) In a ring R, if A is a minimal ideal (right ideal) such that $A \uplus \Phi_r(A)$, then there exists a maximal ideal (right ideal) B such that $R = A \oplus B$.

(xi) If R is a zero ring ($R^2 = (0)$), then $\Phi = \Phi(R^+)$, $\Phi(R^+)$ the Frattini subgroup of the additive group R^+.

In the remaining portion of this note, the Jacobson radical and the upper Baer radical will be denoted by J and N respectively.

Theorem 1. In a ring R, $\Phi_r \subseteq J$ and $\Phi \subseteq N$.

Proof. If $J \neq R$, then J is the intersection of the modular maximal right ideals of R; and if $N \neq R$, then N is the intersection of the modular maximal ideals.

Note that in Theorem 1 equality may not occur as the ring $\{0, 2; \text{mod } 4\}$ exemplifies.

Theorem 2. In a ring R, $RJ \subseteq \Phi_r$ and $JR \subseteq \Phi_l, \Phi_l$ denoting the set of nongenerators with respect to left ideals.

Proof. Since the result follows if $\Phi_r = R$, consider the case that $\Phi_r \subseteq R$ properly. Suppose there is an element $x \in R$ such that $yx \notin \Phi_r$ for some element $y \in R$. Then there exists a maximal right ideal M such that $yx \notin M$. M defines a simple right R-module $R/M \cong R^*$, and under the natural R-homomorphism θ of $R \to R^*$, $y \theta \neq 0$ and $(yx) \theta \neq 0$. So $(R^*)R = R^*$, and an element $z \in R$ exists such that $(yxz) \theta = y \theta$. Then note that if xz is r.q.r., there exists an element $b \in R$ such that $xz + b = xzb$. Under θ, $yxz + by = yxz$ becomes $(yxz) \theta = -(yb) \theta + (yxb) \theta = -(yb) \theta + (yb) \theta = 0$. So $yxz \notin M$ and a contradiction. Therefore xz cannot be r.q.r. In conclusion, if x has the property that $yx \notin \Phi_r$ for some $y \in R$, then $x \in J$. So for each element $x \in J$, $Rx \subseteq \Phi_r$, i.e. $RJ \subseteq \Phi_r$. Similarly $JR \subseteq \Phi_l$. (Note: this proof was suggested by a result of Kertesz [2].)

Corollary 2.1. (a) For a ring R, Φ_r and Φ_l are ideals in R.

(b) For a ring R, $J^2 \subseteq \Phi_r \cap \Phi_l$.

(c) $J = (\Phi_r: R) = (\Phi_l: R)$

(d) For a ring R, $x \in J$ iff $R \times R \subseteq \Phi_r \cap \Phi_l$.

Since in general both Φ_r and Φ_l are in J, it follows that in each primitive ring the right ideals and the left ideals are Φ_r- and Φ_l-free respectively. If the ring is a simple nonradical ring, then the ring is
Φ-free. For the simple primitive rings, all three hold. And for a field F, $Φ(F) = (0)$.

In general $Φ ⊆ J$. For example: let R be the ring of all linear transformations of a vector space V with a denumerable basis. It is known (e.g., see [3]) that R is a primitive ring and $J = (0)$. Since R has unity, $N = R$; and, in fact, the only proper ideal besides (0) is the ideal of elements of finite rank. This ideal is $N = Φ$. Also note that $Φ_r = Φ_t = (0)$.

Theorem 3. For a ring R having $R^2 = R$, $Φ$ is a semiprime ideal.

Proof. Each maximal ideal is prime. If A is an ideal for which $A^2 ⊆ Φ$, then A^2 is contained in each maximal ideal M. So A is contained in each M. Therefore $A ⊆ Φ$.

Corollary 3.1. For a ring R having $R^2 = R$, the prime radical is contained in $Φ$.

Corollary 3.2. For a ring R having $R^2 = R$, $J ⊆ Φ$ iff $J^2 ⊆ Φ$.

Theorem 4. For a ring R having $R^2 = R$ and center Z, $N ∩ Z ⊆ Φ$, and $N ∩ Z = Φ$.

Proof. If $A = N ∩ Z ⊆ Φ$, and M is a maximal right ideal not containing A, then $R = A + M$. This implies that M is a maximal ideal, and $R^2 = R$ implies that R/M is a simple commutative nonzero ring. Hence M is modular and $N ⊆ M$ implies that $A ⊆ M$. So $A ⊆ Φ$. Similarly $N ∩ Z ⊆ Φ$.

Corollary 4.1. If R is a commutative ring and $R^2 = R$, then $J = Φ$.

Theorem 5. For a ring R having $R^2 = R$, $Φ_r = Φ_t = J$.

Proof. Consider $Φ_r$, and note that for $R = Φ_r$ and $Φ_r ⊆ J$ implies that $J = Φ_r$. So then consider the case that $Φ_r ⊆ R$ properly. By Theorem 2, $J^2 ⊆ Φ_r$. Form $R/J^2 ∼= R^*$ noting that $J^* ∼= J(R/J^2) = J/J^2$ and that $Φ^* ∼= Φ_r(R/J^2) = Φ_r/J^2$. If $x ∊ J^*$ and $x ∊ Φ^*$, there exists a maximal right ideal M^* such that $x ⊆ M^*$. Under the natural R^*-homomorphism $θ$ of $R^* → R^*/M^*$, R^* is mapped onto a simple right R^*-module R^*/M^*. Since $x ∊ M^*$, then $J^*θ = R^*/M^*$. But $J^*θ = (0)$ implies that R^*/M^* is annihilated by R^*, i.e. $(R^*/M^*)R^* = (0)$. This contradicts the hypothesis that $R^2 = R$ since, in turn, this implies that $R^{*2} = R^*$ and $(R^*/M^*)R^* = R^*/M^*$. So $J^* ⊆ M^*$. This leads to $J^* ⊆ Φ^*$ and hence $J ⊆ Φ_r$. So the result follows.

Similarly $Φ_t = J$.

Corollary 5.1 (L. Fuchs [1]). For a ring with unity, $Φ_r = Φ_t = J$.

Theorem 6. If R satisfies the d.c.c. on right ideals, then $\Phi = (0)$ if and only if R is a direct sum of a finite collection of simple ideals.

Proof. Consider the intersections of all finite collections of maximal ideals. By the d.c.c. on right ideals, each linear system has a minimal element, say D. If M is a maximal ideal, then $D = D \cap M$. So $D \subseteq \Phi$ and $D = (0)$. As is known, if there exists in a ring a finite number of maximal ideals $M_i, (i = 1, \ldots, n)$ with zero intersection, then R is isomorphic to the direct sum of some or all of the simple rings $R/M_i (i = 1, \ldots, n)$. By (ix) each direct summand has $\Phi(R/M_i) = (0)$ since R/M_i is a simple ideal.

Again by (ix) the converse is evident.

Theorem 7. If R is a ring with d.c.c. on right ideals, then both Φ and Φ_i are contained in Φ.

Proof. The theorem is valid whenever $R = \Phi$, so consider the case that $\Phi \subset R$ properly. In particular restrict attention to $R^* = R/M$ for a maximal ideal M. For either $R^* = (0)$ or $R^* = R^*$, $\Phi^* = (0)$. Hence under the natural homomorphism θ of $R \to R^*$, $\Phi_\theta \subseteq (0)$ implies that $\Phi_r \subseteq M$. So $\Phi_r \subseteq \Phi$ and similarly $\Phi_i \subseteq \Phi$.

Theorem 8. If R is a ring with the d.c.c. on right ideals, then $\Phi_r = \Phi_i = \Phi$.

Proof. Since Φ_r is an ideal of R form $R^* \cong R/\Phi_r$ having $\Phi_r^* = \Phi_r(R^*) = (0), \Phi^* \cong \Phi_r$ and $J^* \cong J/\Phi_r$. If M^* is a maximal right ideal such that $\Phi^* \subseteq M^*$, then $R^* = \Phi^* + M^*$. However, since $R^* \subseteq \Phi_r^* = (0)$, then Φ^* is in the annihilator of M^*. This implies that M^* is an ideal of R^* and hence a contradiction to the assumption that $\Phi^* \subseteq M^*$. So $\Phi^* = (0)$, i.e. $\Phi \subseteq \Phi_r$, and the result follows. Similarly, $\Phi_i = \Phi$.

Theorem 9. For a ring R with d.c.c. on right ideals and R not a radical ring, then $\Phi = J$ if and only if $R^2 = R$.

Proof. Suppose $R^2 = R$ and there exists a maximal ideal M such that $J \subseteq M$. Then under the natural homomorphism θ of $R \to R/M = R^*$, $J\theta = R^*$. However, since $J^2 \subseteq \Phi \subseteq M$ it follows that $R^* = (0)$ and this contradicts $R^2 = R$. So $J \subseteq \Phi$. Since $J = N$ and $\Phi \subseteq N$, then $\Phi = J$.

On the other hand, suppose that $J = \Phi \subset R$ properly. Form $R/\Phi \cong R^*$ and note that $J^* \cong J(R/\Phi) = (0) = \Phi^* \cong \Phi(R/\Phi)$. As is known, $J^* = (0)$ implies that $R^* = R^*$. If $R^2 \subset R$ properly and $R^* = R^*$ under the natural homomorphism θ of $R \to R^*$, then $R = \Phi + R^2 = R^2$ and a contradiction. So $R^2 = R$.
In a radical ring R the condition $\Phi = J$ does not necessarily imply that $R^a = R$. For example, let R be a zero ring having R^+ a group of type p^∞. Then $\Phi(R) = \Phi(R^+) = R^+$ and $J = R$.

Bibliography