ON THE RESTRICT-INDUCE MAP OF GROUP CHARACTERS

D. L. WINTER

The purpose of this note is to give a new proof of the following theorem due to E. Artin.

Theorem. Each ordinary irreducible character of a finite group is a linear combination with rational coefficients of characters induced from linear characters of cyclic subgroups.

Let G be a finite group and let K_1, \cdots, K_n be the classes of conjugate elements of G. Then the ordinary irreducible characters χ_1, \cdots, χ_n form a basis of the vector space U of all complex-valued class functions on G over the complex number field. This basis is orthonormal relative to the usual inner product. There is another orthonormal basis $\alpha_1, \cdots, \alpha_n$ defined by

$$\alpha_i(g) = 0 \quad \text{if} \quad g \in G - K_i,$$

$$= \sqrt{|C(g)|} \quad \text{if} \quad g \in K_i,$$

where $|C(g)|$ is the order of the centralizer $C(g)$ of g in G.

Let H be a subgroup of G. We define a linear transformation T of U by $T(\theta) = (\theta | H)^*$, the class function on G obtained by inducing the restriction of θ to H. It will be noted that T is symmetric, for, applying Frobenius reciprocity twice, we have

$$(T(\theta), \eta)_\sigma = ((\theta | H)^*, \eta) = (\theta | H, \eta | H)_\sigma$$

$$= (\theta, (\eta | H)^*) = (\theta, T(\eta))_\sigma.$$

Let

$$T(\chi_i) = \sum_j a_{ij} \chi_j$$

so that $A = (a_{ij})$ is the matrix of T relative to the basis χ_1, \cdots, χ_n. It is known that each a_{ij} is a nonnegative rational integer.

If $K_i \cap H$ is empty, the formula for the value of an induced character implies $T(\alpha_i) = 0$. If $K_i \cap H$ is nonempty, then

$$K_i \cap H = C_1 + \cdots + C_s$$

where each C_j is a class of H. Let $g \in K_i$ and let $g_j \in C_j, j = 1, \cdots, s$. Then

Received by the editors December 16, 1966.
ON THE RESTRICT-INDUCE MAP OF GROUP CHARACTERS

\[T(\alpha_i)(g) = \left[\begin{array}{c|c|c} C(g) & |K_i \cap H| & / |H| \\ \hline \end{array} \right] \alpha_i(g) \]

\[= \left[\sum \begin{array}{c} C(g) \mid |H \cap C(g_j)| \end{array} \right] \alpha_i(g) \]

\[= \left[\sum \begin{array}{c} C(g_i : C(g_i) \cap H) \end{array} \right] \alpha_i(g). \]

Since \(T(\alpha_i)(g) = \alpha_i(g) = 0 \) for \(g \in G - K_i \), we have

\[T(\alpha_i) = r_i \alpha_i \]

where \(r_i = \sum_j C(g_j : C(g_j) \cap H) \) is a sum of positive integers. Hence \(\alpha_1, \ldots, \alpha_n \) is a basis of eigenvectors of \(T \) and the eigenvalues \(r_1, \ldots, r_n \) are nonnegative integers. The above shows that the rank of \(T \) is the number of classes of \(G \) meeting \(H \). The kernel of \(T \) is the set of class functions on \(G \) vanishing on those classes meeting \(H \).

The two matrices of \(T, A \) and \(\text{diag} \{ r_1, \ldots, r_n \} \), are similar over the complex number field. Since their entries are rational numbers, they are already similar over the rational number field \(Q \). This implies the existence of a basis \(\theta_1, \ldots, \theta_n \) of eigenvectors of \(T \) which are \(Q \)-linear combinations of \(\chi_1, \ldots, \chi_n \) with eigenvalues \(r_1, \ldots, r_n \).

We consider \(\theta_1, \ldots, \theta_n \) as a basis of the vector space \(V(G) \) of all \(Q \)-linear combinations of \(\chi_1, \ldots, \chi_n \) and restrict \(T \) to \(V(G) \). Assume the notation is chosen so that \(r_i \neq 0 \), \(i = 1, \ldots, t \) while \(r_i = 0 \) for \(i = t+1, \ldots, n \). Note that for \(i \leq t \), \(\theta_i(g) = 0 \) if \(g \) lies in a class of \(G \) not meeting \(H \), because \(\theta_i(g) = (1/r_i) T(\theta_i)(g) = 0 \). On the other hand for \(i > t \), \(\theta_i(g) = 0 \) if \(g \) lies in a class meeting \(H \). Now let \(\chi \) be an irreducible character of \(G \) and \(a_1, \ldots, a_n \) rational numbers such that \(\chi = \sum_{j=1}^n a_j \theta_j \). Set \(\mu = \sum_{j=1}^t a_j \theta_j \). It follows that \(\mu \) vanishes on those classes not meeting \(H \) and that \(\mu \mid H = \chi \mid H \). Furthermore,

\[\mu = \sum_{j=1}^t \frac{a_j}{r_j} \theta_j = \sum_{j=1}^t \frac{a_j}{r_j} \theta_j \mid H. \]

Since \(\theta_j \mid H \) is a \(Q \)-linear combination of irreducible characters of \(H \), we have the following proposition.

Proposition. Given an irreducible character \(\chi \) of \(G \) and a subgroup \(H \) of \(G \), there exists a \(Q \)-linear combination \(\mu \) of characters of \(G \) induced from irreducible characters of \(H \) such that \(\mu = 0 \) on classes of \(G \) not meeting \(H \) and \(\mu \mid H = \chi \mid H \).
The function μ is not uniquely determined. In the following paragraph we write $\chi(H)$ for one such function, indicating its dependence on the given character χ and the given subgroup H. The particular choice of $\chi(H)$ is immaterial.

Now let $g_i \in K_i$, $i = 1, 2, \ldots, n$ and let H_i be the cyclic subgroup generated by g_i. Let χ be an irreducible character of G. The proof of the main result is completed by noting

$$\chi = \chi(H_1) + \chi(H_2) + \cdots + \chi(H_n)$$
$$- \chi(H_1 \cap H_2) - \chi(H_1 \cap H_3) - \cdots - \chi(H_{n-1} \cap H_n)$$
$$+ \chi(H_1 \cap H_2 \cap H_3) + \cdots + \chi(H_{n-2} \cap H_{n-1} \cap H_n)$$
$$\vdots$$
$$+ (-1)^{n+1} \chi(H_1 \cap H_2 \cap \cdots \cap H_n)$$

where in the kth row there is one and only one term for each possible intersection of k of the H_i's. (This expression holds whenever H_1, \ldots, H_n is a set of subgroups of G such that each class of G meets at least one H_i.)

\textbf{Michigan State University}