I. Introduction. Let A and E be continuous linear transformations which map a Banach space into itself. If E commutes with A^n, for some integer n greater than 1, we do not necessarily know whether E commutes with A. The main purpose of this paper is to exhibit a proof of the following theorem:

Let A and E be continuous linear transformations which map a complex Banach space into itself. Let n be an integer greater than 1. If $\sigma(A) \cap \sigma(e^{2\pi i/k}A) = \emptyset$ for $k = 1, \ldots, n-1$ and E commutes with A^n, then E commutes with A.

A significant corollary of this theorem is as follows:

If A is a continuous linear transformation from a Hilbert space into itself and A^n is normal, then A is normal, whenever the spectrum of A satisfies the condition stated in the theorem.

Throughout the paper the following notation and terminology will be used. \mathfrak{X} is a complex Banach space and $\mathfrak{L}(\mathfrak{X})$ is the space of continuous linear transformations from \mathfrak{X} into \mathfrak{X}. The identity element of $\mathfrak{L}(\mathfrak{X})$ will be denoted by I. If $A \in \mathfrak{L}(\mathfrak{X})$, $\sigma(A)$ will denote the spectrum of A and $\rho(A)$ the resolvent set of A. If C is a simple closed rectifiable curve in the complex plane, C will be assumed to be oriented in a counterclockwise direction. By the interior of C we mean the bounded component of the complement of C; the exterior of C is the unbounded component.

II. Essential background material. The proof of the above-stated theorem relies heavily on the following results, which are found in The spectrum of linear transformations by E. R. Lorch [1]:

Theorem 1. Let C be a simple closed rectifiable curve lying entirely within $\rho(A)$, where $A \in \mathfrak{L}(\mathfrak{X})$. Then the contour integral

$$ P = \frac{1}{2\pi i} \int_C (zI - A)^{-1}dz $$

exists and represents an element of $\mathfrak{L}(\mathfrak{X})$.

The transformation P is unchanged if the curve C is continuously

Received by the editors July 22, 1966 and, in revised form, December 8, 1966.
deformed into a curve \(C' \), providing only that the deformation is effected without going outside of \(\rho(A) \) [1, p. 241].

Theorem 2. The operator \(P \) defined by the curve \(C \) as in Theorem 1 has the following properties:

(a) \(P = 0 \) if and only if every point in the interior of \(C \) lies in \(\rho(A) \).

(b) \(P = 1 \) if and only if every point in the exterior of \(C \) lies in \(\rho(A) \) [1, p. 244].

III. Basic lemmas. It is well known that if \(A \in \mathcal{L}(\mathbb{C}) \), \(\sigma(A) \) is a nonempty, compact subset of the complex plane. If for some integer \(n \), \(n \geq 1 \), \(\sigma(A) \cap \sigma(e^{2\pi i k/n} A) = \emptyset \) for \(k = 1, \ldots, n-1 \), then \(M > 0 \), where

\[
M = \min_{k=1, \ldots, n-1} \text{g.l.b.} \{ |z - w| : z \in \sigma(A), w \in \sigma(e^{2\pi i k/n} A) \}.
\]

Since \(\sigma(A) \) is compact, there exist \(z_1, \ldots, z_m \) in \(\sigma(A) \) such that \(\sigma(A) \subseteq \bigcup_{j=1}^{n} B(z_j; M/3) \), where \(B(z; M/3) \) is the open ball in the complex plane of radius \(M/3 \) and center \(z \). Let \(V_1, \ldots, V_p \) be the components of \(\bigcup_{j=1}^{m} B(z_j; M/3) \) and let

\[
S_{j}^{p(k-1)+j} = \sigma(e^{2\pi i k/n} A) \cap (e^{2\pi i k/n} V_j)
\]

for \(k = 1, \ldots, n \) and \(j = 1, \ldots, p \). Note the following facts:

1. for each \(j \), \(\sigma_j \) is a compact subset of the complex plane;
2. for \(q \neq j \), \(\sigma_q \cap \sigma_j = \emptyset \);
3. for \(k = 1, \ldots, n \), \(\sigma(e^{2\pi i k/n} A) = \bigcup_{j=1}^{p} S_{j}^{p(k-1)+j} \).

Let \(S = \{ s_k : k = 1, \ldots, n \} \). We will say that \(s_j \) is interior to \(s_q \) if \(j \neq q \) and whenever \(C \) is a simple closed rectifiable curve such that \(s_q \) is in the interior of \(C \), then \(s_j \) is also in the interior of \(C \). We will denote this by \(s_j < s_q \). Because of the way in which \(S \) was constructed, if \(s_j < s_q \), there exists a simple closed rectifiable curve \(C' \) such that \(s_j \) is in the interior of \(C' \) and \(s_q \) is in the exterior of \(C' \).

\(C \) will be called a proper curve for \(s_j \) if \(C \) is a simple closed rectifiable curve, lying entirely in \(\bigcap_{j=1}^{n} \rho(e^{2\pi i k/n} A) \), such that (1) \(s_j \) is in the interior of \(C \) and (2) whenever \(s_q \) is in the interior of \(C \), then \(s_q = s_j \) or \(s_q < s_j \).

An element \(s_k \) of \(S \) will be said to be of order 0 if there exists no \(s_j \) in \(S \) such that \(s_j < s_k \). Since \(S \) is a finite set, there must exist elements of \(S \) of order 0. A branch of length \(k \) in \(S \) is a sequence \(\{ t_j : j = 1, \ldots, k \} \) of elements of \(S \) such that (1) \(t_1 \) is of order 0, (2) \(t_j < t_{j+1} \) for \(j = 1, \ldots, k-1 \), and (3) there exists no \(s_i \) in \(S \) such that \(t_j < s_i < t_{j+1} \). An element \(s_i \) of \(S \) is of order \(k \), \(k \geq 1 \), if there exists a branch \(\{ t_j : j = 1, \ldots, k \} \) of length \(k \) in \(S \) such that \(t_k < s_i \) and there
exists no branch \(\{ \tilde{t}_j : j = 1, \ldots, k+1 \} \) of length \(k+1 \) in \(S \) such that \(\tilde{t}_{k+1} < s_i \).

Lemma 1. Let \(n \) be a positive integer. There exist nonzero complex numbers \(b_1, \ldots, b_n \) such that

\[
(z^n I - A^n)^{-1} = A^{-(n-1)} \sum_{j=1}^{n} b_j (zI - e^{2\pi i n/A})^{-1},
\]

whenever \(A \) is an invertible element of \(\mathcal{L}(\mathcal{X}) \) and \(z \in \bigcap_{j=1}^{n} \rho(e^{2\pi i n/A}) \).

Proof. Let \(\{ b_1, \ldots, b_n \} \) be the unique solution of the system of equations

\[
\sum_{k=1}^{n} b_k e^{2\pi i (j-1)/n} = 0 \quad \text{for } j = 1, \ldots, n - 1,
\]

\[
\sum_{k=1}^{n} b_k e^{2\pi i (n-1)/n} = 1.
\]

Let \(z \) be any element of \(\bigcap_{j=1}^{n} \rho(e^{2\pi i n/A}) \). Then

\[
A^{n-1} = \sum_{j=1}^{n} z^{n-j} A^{j-1} \left(\sum_{k=1}^{n} b_k e^{2\pi i k(j-1)/n} \right)
\]

\[
= \sum_{k=1}^{n} b_k \left(\sum_{j=1}^{n} z^{n-j} (e^{2\pi i k/n A})^{j-1} \right)
\]

\[
= \sum_{k=1}^{n} b_k (zI - e^{2\pi i k/n A})^{-1} (z^n I - A^n)
\]

\[
= (z^n I - A^n) \sum_{k=1}^{n} b_k (zI - e^{2\pi i k/n A})^{-1}.
\]

Therefore, \((z^n I - A^n)^{-1} = A^{-(n-1)} \sum_{k=1}^{n} b_k (zI - e^{2\pi i k/n A})^{-1} \).

To see that each of the \(b_j \) is nonzero we need only consider a special case. Let \(A = I \). Let \(C \) be a simple closed rectifiable curve such that \(e^{2\pi i j/n} \) is in the interior of \(C \) and \(e^{2\pi i k/n} \), \(k \neq j \), is in the exterior of \(C \). Then, using the last equation in the preceding paragraph, we see that

\[
\frac{1}{2\pi i} \int_C (z^n - 1)^{-1} dz = \sum_{k=1}^{n} b_k \frac{1}{2\pi i} \int_C (z - e^{2\pi i k/n})^{-1} dz
\]

\[
= b_j.
\]

However,

\[
\frac{1}{2\pi i} \int_C (z^n - 1)^{-1} dz = \prod_{k=1; k \neq j}^{n} (e^{2\pi i j/n} - e^{2\pi i k/n})^{-1} \neq 0.
\]

Therefore, \(b_j \neq 0, j = 1, \ldots, n \).
The most serious problem which arose in the proof of Theorem 3 was the interrelation between the components of \(\sigma(A) \) and the components of \(\sigma(e^{2\pi ik/n}A) \), \(k = 1, \cdots, n-1 \). If there exists a simple closed rectifiable curve \(C \) such that \(\sigma(A) \) is interior to \(C \) and \(\sigma(e^{2\pi ik/n}A) \) is exterior to \(C \) for \(k = 1, \cdots, n-1 \), then by Theorem 2 we have

\[
\int_C (zI - e^{2\pi ik/n}A)^{-1}dz = 0 \quad \text{for } k = 1, \cdots, n-1
\]

and \((1/2\pi i) \int_C (zI - A)^{-1}dz = I \). Using Lemma 1, we see that

\[
\frac{1}{2\pi i} \int_C (z^nI - A^n)^{-1}dz = A^{-(n-1)}b_n.
\]

Therefore, if \(E \) commutes with \(A^n \), \(E \) also commutes with \(A^{-(n-1)} \) and with \(A \). However, in the case in which there exists no such curve \(C \), the situation is much more complicated.

Lemma 2. Let \(A \) and \(E \) be elements of \(\mathcal{L}(\mathfrak{X}) \) and let \(n \) be an integer greater than 1. Suppose that

\[
\sigma(A) \cap \sigma(e^{2\pi ik/n}A) = \emptyset \quad \text{for } k = 1, \cdots, n-1
\]

and that \(E \) commutes with \(A^n \). If \(s_j \) is an element of \(S \) and \(C \) is a proper curve for \(s_j \), then \(E \) commutes with

\[
A^{-(n-1)} \int_C (zI - e^{2\pi ik/n}A)^{-1}dz, \quad k = 1, \cdots, n.
\]

Proof. The proof of this lemma will be by induction on the order of the elements of \(S \). Note that if \(C \) is any simple closed rectifiable curve, lying in \(\cap_{k=1}^n \sigma(e^{2\pi ik/n}A) \), then \(\int_C (z^nI - A^n)^{-1}dz \) is an element of \(\mathcal{L}(\mathfrak{X}) \) and commutes with \(E \) [1, pp. 240–241].

Let \(s_j \) be an element of \(S \) of order 0 and let \(C \) be a proper curve for \(s_j \). Assume that \(s_j \subset \sigma(e^{2\pi ik/n}A) \). By Theorem 2,

\[
(1) \quad \int_C (zI - e^{2\pi iq/n}A)^{-1}dz = 0 \quad \text{for } q \neq k \quad \text{and} \quad q = 1, \cdots, n.
\]

Using (1) and Lemma 1, we have

\[
(2) \quad \int_C (z^nI - A^n)^{-1}dz = b_kA^{-(n-1)} \int_C (zI - e^{2\pi ik/n}A)^{-1}dz.
\]

From (1) and (2) it follows that \(E \) commutes with

\[
A^{-(n-1)} \int_C (zI - e^{2\pi iq/n}A)^{-1}dz \quad \text{for } q = 1, \cdots, n.
\]
whenever C is a proper curve for an element of S of order 0.

Assume now that whenever s_j is of order p, $0 \leq p \leq m$, and C is a proper curve for s_j, E commutes with

$$A^{-(n-1)} \int_C (zI - e^{2\pi i q/n}A)^{-1}dz \quad \text{for } q = 1, \cdots, n.$$

Let s_{j_0} be an element of S of order $m+1$ and C be a proper curve for s_{j_0}. Let t_1, \cdots, t_r be the elements of S such that $t_j < s_{j_0}$, $j = 1, \cdots, r$ and there exists no s_k in S such that $t_j < s_k < s_{j_0}$. Let C_j, $j = 1, \cdots, r$, be a proper curve for t_j. Since each of the t_j, $j = 1, \cdots, r$, is of order p, $p \leq m$, then E commutes with

$$A^{-(n-1)} \int_{C_j} (zI - e^{2\pi i q/n}A)^{-1}dz \quad \text{for } k = 1, \cdots, n \text{ and } j = 1, \cdots, r.$$

Assume that $s_{j_0} \in \sigma(e^{2\pi i k/n}A)$. It follows from Theorems 1 and 2 that for $q \neq k$,

$$A^{-(n-1)} \int_C (zI - e^{2\pi i q/n}A)^{-1}dz = \sum_{p=1}^r A^{-(n-1)} \int_{C_p} (zI - e^{2\pi i q/n}A)^{-1}dz.$$

Therefore, the induction hypothesis implies that E commutes with

$$A^{-(n-1)} \int_C (zI - e^{2\pi i q/n}A)^{-1}dz \quad \text{for } q \neq k \quad \text{and} \quad q = 1, \cdots, n.$$

Moreover, since E commutes with $\int_C (z^nI - A^n)^{-1}dz$ and

$$\int_C (z^nI - A^n)^{-1}dz = \sum_{q=1}^n b_q A^{-(n-1)} \int_C (zI - e^{2\pi i q/n})^{-1}dz,$$

E also commutes with $A^{-(n-1)} \int_C (zI - e^{2\pi i k/n}A)^{-1}dz$. Thus the proof by induction is complete.

IV. Theorems.

Theorem 3. Let A and E be elements of $\mathcal{L}(X)$ and let n be an integer greater than 1. If $\sigma(A) \cap \sigma(e^{2\pi i k/n}A) = \emptyset$ for $k = 1, \cdots, n-1$, and A^n commutes with E, then A commutes with E.

Proof. Let t_1, \cdots, t_r be the elements of S which are interior to no other elements of S. Let C_j, $j = 1, \cdots, r$, be a proper curve for t_j. Let C be a simple closed rectifiable curve such that t_j is interior to C for $j = 1, \cdots, r$. By Theorem 2

$$\frac{1}{2\pi i} \int_C (zI - A)^{-1}dz = I.$$
since $\sigma(A)$ lies entirely in the interior of C. Moreover, by Theorem 1 and Theorem 2

$$\frac{1}{2\pi i} \int_C (zI - A)^{-1} dz = \sum_{j=1}^{r} \frac{1}{2\pi i} \int_{c_j} (zI - A)^{-1} dz.$$

Combining (1) and (2), we see that

$$\sum_{j=1}^{r} \frac{A^{-(n-1)}}{2\pi i} \int_{c_j} (zI - A)^{-1} dz = A^{-(n-1)}.$$

Lemma 2 asserts that E commutes with each of the summands in the left hand side of equation (3). Therefore E commutes with $A^{-(n-1)}$ as well as A^n, which implies that E commutes with A.

One of the simplest situations in which the hypotheses of Theorem 3 are satisfied is when \mathcal{H} is a Hilbert space and either $\text{Re } A \gg \rho > 0$ or $\text{Im } A \gg \rho > 0$, for some real number ρ. Then A and A^2 commute with exactly the same operators, since $\sigma(A) \cap \sigma(-A) = \emptyset$. If in addition A^2 is normal, $AA^* = A^*A$ since $A^2A^* = A^*A^2$. But this implies that $AA^* = A^*A$ since $\sigma(A^*) \cap (-A^*) = \emptyset$. More generally, we have by an analogous proof:

Theorem 4. Let \mathcal{H} be a Hilbert space. If A is an element of $\mathcal{L}(\mathcal{H})$ such that A^n is normal for some n greater than 1 and $\sigma(A) \cap \sigma(e^{2\pi i k/n} A) = \emptyset$ for $k = 1, \ldots, n-1$, then A is normal.

Reference

University of North Carolina at Charlotte