SOME COMMENTS ON THE STRUCTURE OF COMPACT DECOMPOSITIONS OF S^3

H. W. LAMBERT

In this note we derive some theorems of a general nature on compact, upper semicontinuous decompositions of S^3, spherical 3-space. A compact decomposition G of S^3 is one obtained from a compact, proper subset D of S^3 by setting $G = \{ g: g$ is either a component of D or a point of $S^3 - D \}$. In this paper a point-like, compact decomposition of S^3 is one such that the complement of each component of D is homeomorphic to E^3, Euclidean 3-space; and a 1-dimensional, compact decomposition of S^3 is one such that each component of D has dimension no greater than 1.

Theorem 1 shows that in the decomposition space of a point-like, compact decomposition of S^3 the collection of points which fail to have some neighborhood homeomorphic to E^3 is dense in itself. The remaining theorems are concerned with the effect of inserting or removing certain elements from a compact decomposition of S^3. Armentrout's [2, Theorems 1, 6] are essential to our investigation. A version of these theorems appears below as Theorem A. A summary of some known results on compact decompositions of S^3 may be found in [3].

We assume then that G denotes a compact decomposition of S^3 with associated projection map P onto the decomposition space S^3/G. Let H_G denote the sum of the nondegenerate elements of G. Note that $P(\text{Cl } H_G)$ is compact and 0-dimensional. It is known that there is a sequence of compact polyhedral 3-manifolds with boundary in S^3 such that $\bigcap_{i=1}^\infty M_i = \text{Cl } H_G$ and, for each i, $M_{i+1} \subseteq \text{Int } M_i$. Such a sequence M_i will be referred to as a defining sequence for G. Let $Q = \{ x: x \in S^3/G$ and x has a neighborhood homeomorphic to $E^3 \}$, and let $F = S^3/G - Q$. Note that if $F \neq \emptyset$, then F is compact and 0-dimensional.

Theorem A. Assume G is a compact decomposition of S^3 ($P(\text{Cl } H_G)$ is compact and 0-dimensional). Let M be a compact polyhedral 3-manifold with boundary in S^3 such that $\text{Bd } M \cap \text{Cl } H_G = \emptyset$. If $P(M) \subseteq Q$ and either G is a point-like decomposition or M has a triangulation whose 1-skeleton is disjoint from $\text{Cl } H_G$, then there is a map of M onto itself fixed on $\text{Bd } M$ and inducing the same decomposition as G restricted to M.

Received by the editors October 12, 1966.

180
THE STRUCTURE OF COMPACT DECOMPOSITIONS OF S^3

Proof. Since either G is a point-like decomposition or M has a triangulation whose 1-skeleton is disjoint from $\text{Cl} \ H_G$, it follows that there is a collection of disjoint polyhedral arcs A_1, \ldots, A_n such that each $\text{Int} \ A_i \subset \text{Int} \ M - \text{Cl} \ H_G$, each $\text{Bd} \ A_i \subset \text{Bd} \ M$, and any two boundary components of any component of M are connected by one of the A_i. For each i, let A'_i be an open regular neighborhood of A_i in M such that $\text{Cl} \ A_i \cap \text{Cl} \ A'_j = \emptyset$ for $i \neq j$ and each $\text{Cl} \ A'_i \cap \text{Cl} \ H_G = \emptyset$. Let $M' = M - \bigcup_{i=1}^n A'_i$. Since the boundary of each component of M' is connected, it follows from the proof of either [2, Theorem 1] (if G is point-like) or [2, Theorem 6] (if M has a triangulation whose 1-skeleton is disjoint from $\text{Cl} \ H_G$) that there is a homeomorphism h' of M' onto $P(M')$ such that $h' | \text{Bd} \ M' = P | \text{Bd} \ M'$. Extending h' by using P on each A'_i, we see that there is a homeomorphism h of M onto $P(M)$ such that $h | \text{Bd} \ M = P | \text{Bd} \ M$. The required map is $h^{-1}P$.

Theorem 1. Let G be a point-like, compact decomposition of S^3. Then F is either empty or a Cantor set, that is F has no isolated points.

Proof. Suppose that F has an isolated point x. In the defining sequence M_i of G, let n be chosen large enough that the component K of M_n containing $P^{-1}(x)$ is such that $P(K) - x \subset Q$. Since G is point-like there is a map f' of K onto itself such that f' is fixed on $\text{Bd} \ K$, f' is a homeomorphism on $K - P^{-1}(x)$ and $f'(P^{-1}(x))$ is a point. For $i = 1, 2, 3, \ldots$, let $K_i = M_{n+i} \cap K$ and let L_i be the component of K_i containing $P^{-1}(x)$. Let $K'_i = K_i - L_i$, and, for each i, let $K_{i+1} = K_{i+1} - \bigcup_{j=1}^i (K'_j) \cup L_{i+1}$. Since each $P(K'_i) \subset Q$, it follows from Theorem A that there is a mapping f_i of K'_i onto itself fixed on $\text{Bd} \ K'_i$ and inducing the same decomposition as G restricted to K'_i. Assuming each $f_i = \text{identity}$ on $K - K'_i$, we have that $f = f_i(\prod_{i=1}^n f_i)$ is a map of K onto itself fixed on $\text{Bd} \ K$ and inducing the same decomposition as G restricted to K. It follows that the map Pf^{-1} is a homeomorphism of K onto $P(K)$. But this contradicts that $x \in F$. Therefore F is either empty or it is homeomorphic to a Cantor set.

In [6], Finney showed that if f is a point-like, simplicial map of S^3, then $f(S^3)$ is homeomorphic to S^3. To prove this he simplified the decomposition G_f of S^3 induced by f. This simplification was accomplished by a process of deleting portions of certain nondegenerate elements of G_f to obtain a new decomposition G_f' such that S^3/G_f' is homeomorphic to S^3/G_f. In Theorems 2 and 3 it is shown that, for compact decompositions G of S^3, we may delete certain elements of G to form a new decomposition G' such that S^3/G is homeomorphic to S^3/G'.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Theorem 2. Let G be a point-like, compact decomposition of S^3. Let U be an open set in S^3 such that U is the union of elements in G and $P(U) \subseteq Q$. Let G' be the decomposition obtained by points of U and elements of G in $S^3 - U$. Then S^3/G is homeomorphic to S^3/G'.

Proof. It is easily checked that G' is an upper semicontinuous decomposition of S^3. Let P' be the projection map for G'. Let M_i be a defining sequence for G. Define K_i to be the union of all components of M_i which do not intersect $S^3 - U$. Let $K_i' = K_1$ and, for $i = 1, 2, \ldots$, let $K_i' = K_{i+1} - \bigcup_{j=1}^{i} K_j'$. Since $P(K_i') \subseteq Q$ it follows by Theorem A that there is a map f_i of S^3 onto itself fixed on $S^3 - \text{Int} K_i'$ and inducing the same decomposition as G restricted to K_i'. Let $f = \prod_{i=1}^\infty f_i$. Then $P'fP^{-1}$ is a 1-1 correspondence between the points of S^3/G and S^3/G'. If K is a component of some K_i', then $f^{-1}(K) = K$. Using this fact and that f is a continuous map on U that induces the same decomposition as G restricted to U, it follows that if V is open in S^3 and V is the union of elements in G', then $f^{-1}(V)$ is open in S^3 and $P(f^{-1}(V))$ is open in S^3/G. Hence $P'fP^{-1}$ is a continuous 1-1 map of S^3/G onto S^3/G', and it follows that $P'fP^{-1}$ is a homeomorphism between these spaces.

Theorem 3 is similar to Theorem 2, except that we consider 1-dimensional, compact decompositions of S^3 instead of point-like, compact decompositions of S^3. To prove Theorem 3 the following lemma is needed. A version of this lemma was proved independently by Alford and Sher in [1], but our proof differs from theirs in that we do not use Kwun and Raymond’s [7, Theorem 3, Corollary 2].

Lemma. Let G be a 1-dimensional, compact decomposition of S^3 and let M be a compact polyhedral 3-manifold with boundary in S^3 such that $\text{Bd} M \cap \text{Cl} H_G = \emptyset$, $P(M) \subseteq Q$, and $P(M)$ is embeddable in S^3. Then there is a map of M onto itself fixed on $\text{Bd} M$ and inducing the same decomposition as G restricted to M.

Proof. Let T be a triangulation of M such that each 1-simplex of T that intersects $\text{Bd} M$ is disjoint from $\text{Cl} H_G \cap M$. Since $\dim g \leq 1$ for each $g \subseteq G$, we may assume that the 0-skeleton of T is disjoint from $\text{Cl} H_G$. Let A be a 1-simplex of T with endpoints a and b such that $A \cap \text{Bd} M = \emptyset$, and let K be a polyhedral cube in $\text{Int} M$ obtained by thickening $\text{Int} A$ slightly so that $\text{Bd} A \subseteq \text{Bd} K$ and $K \cap T_1 = A$, where T_1 is the carrier of the 1-skeleton of T. Let U be a complementary domain of $\text{Bd} K$. Since $\dim g \leq 1$ for each $g \subseteq G$ and $P(\text{Cl} H_G)$ is 0-dimensional, it follows that $U - \text{Cl} H_G$ is connected. Hence there is an arc X with endpoints a and b such that $\text{Int} X \subseteq U$ and $X \cap \text{Cl} H_G$.
Similarly there is an arc \(Y \) with endpoints \(a \) and \(b \) such that \(\text{Int } Y \subset (S^3 - \text{Cl } U) \) and \(Y \cap \text{Cl } H_a = \emptyset \). Since \(\text{Bd } M \cap \text{Cl } H_a = \emptyset \), we may assume \(X \cup Y \subset \text{Int } M \).

Suppose \(\text{Bd } K \cap \text{Cl } H_a \) separates \(a \) from \(b \) on \(\text{Bd } K \). Let \(S \) be the component of \(\text{Bd } K - \text{Cl } H_a \) containing \(a \). It follows that \(P(\text{Cl } S) \) is a singular 2-sphere in \(\text{Int } P(M) \) (regard \(P(\text{Cl } S) \) as the image of \(\text{Bd } K \) under the map \(g(x) = P(x) \) if \(x \in S \) and \(g(x) = P(\text{Bd } C) \) if \(x \) belongs to the component \(C \) of \(\text{Bd } K - S \)) and that the simple closed curve \(P(X \cup Y) \) intersects and pierces \(P(\text{Cl } S) \) at just one point. But this is impossible since \(P(M) \) is embeddable in \(S^3 \). Hence there is an arc \(B \) on \(\text{Bd } K \) with endpoints \(a \) and \(b \) such that \(B \cap \text{Cl } H_a = \emptyset \). There is a homeomorphism of \(M \) onto itself which is fixed on \((\text{Bd } M \cup T_1) - \text{Int } A\) and takes \(A \) onto \(B \). Repeating this argument a finite number of times, we push \(T_1 \) off \(\text{Cl } H_G \). Since \(P(M) \subset Q \), this lemma now follows from Theorem A.

Theorem 3. Let \(G \) be a 1-dimensional, compact decomposition of \(S^3 \) and let \(U \) be an open set in \(S^3 \) such that \(U \) is the union of elements in \(G \) and \(P(U) \subset Q \). Let \(G' \) be the decomposition obtained by points of \(U \) and elements of \(G \) in \(S^3 - U \). Then \(S^3/G \) is homeomorphic to \(S^3/G' \).

Proof. As in Theorem 2 we may choose a sequence \(K'_1 \) of disjoint 3-manifolds in \(U \) such that \(U \cap \text{Cl } H_a \subset \bigcup_{i=1}^{n} K'_i \). Each \(K'_i \) can be chosen so that \(P(K'_i) \) is embeddable in \(S^3 \). By the previous lemma there is a map of \(S^3 \) onto itself fixed on \(S^3 - \text{Int } K'_i \) and inducing the same decomposition as \(G \) restricted to \(K'_i \). The remainder of this proof is the same as the proof of Theorem 2.

Corollary. Let \(G \) be a 1-dimensional, compact decomposition of \(S^3 \) such that \(S^3/G \) is a 3-manifold. Then \(S^3/G \) is homeomorphic to \(S^3 \).

As pointed out by Bing in [4, p. 7], it may be shown that if \(C_1, C_2, \cdots, C_n \) are mutually exclusive, nonseparating continua in \(S^3 \), then there is a decomposition \(G \) of \(S^3 \) such that each \(C_i \in G \) and \(S^3/G \) is homeomorphic to \(S^3 \). The next theorem shows that while staying in the category of point-like, compact decompositions we cannot change an element of \(G \) whose image is in \(F \) to one whose image is in \(Q \) by adding more nondegenerate elements to \(G \).

Theorem 4. Let \(G \) and \(G' \) be point-like, compact decompositions of \(S^3 \) such that each nondegenerate element of \(G \) is contained in \(G' \). If \(g \in G \) and \(P(g) \in F \), then \(P'(g) \in F' \) (where \(P' \) is the projection map associated with \(G' \) and \(F' \) is the non-Euclidean points of \(S^3/G' \)).
Proof. Assume by way of contradiction that g_0 is an element of G such that $P(g_0) \subseteq F$ but $P'(g_0) \subseteq Q'$ (where $Q' = S^3/G' - F'$). Let M_i and M'_i be defining sequences for G and G', respectively. Let K be a component of some M_n such that $g_0 \subseteq K$, $P'(K) \subseteq Q'$, and, for each $i = 1, 2, \ldots$, let $K_i = K \cap M_{n+i}$. If for each positive integer m and each positive number ϵ there is a homeomorphism h of S^3 onto itself such that: (1) if $x \in S^3 - K_m$, then $h(x) = x$; and (2) if $g \in G$ and $g \subseteq K_m$, then $\text{diam } h(g) < \epsilon$, then it follows from the proof of Theorem 1 of [5] that $P(K)$ is homeomorphic to K. This would contradict that $P(g_0) \subseteq F$ and establish the theorem.

Hence let m and ϵ be given. Let K' be the union of all elements of G contained in K and of diameter greater than or equal to ϵ. There is a positive integer p such that the components of M'_p which intersect K' are contained in K_m. Denote the union of these components by S. Since $P'(S) \subseteq Q'$, it follows from the proof of Theorem 2 of [2] that there is a homeomorphism h of S^3 onto itself such that: (1) if $x \in S^3 - S$, then $h(x) = x$; and (2) if $g' \in G'$ and $g' \subseteq S$, then $\text{diam } h(g') < \epsilon$. This homeomorphism satisfies the desired properties given in the previous paragraph and completes the proof.

References