Differentiability almost everywhere of functions of several variables
HTML articles powered by AMS MathViewer
- by G. V. Welland
- Proc. Amer. Math. Soc. 19 (1968), 130-134
- DOI: https://doi.org/10.1090/S0002-9939-1968-0225944-7
- PDF | Request permission
References
- Henry Blumberg, The measurable boundaries of an arbitrary function, Acta Math. 65 (1935), no. 1, 263–282. MR 1555405, DOI 10.1007/BF02420947
- A.-P. Calderón and A. Zygmund, Local properties of solutions of elliptic partial differential equations, Studia Math. 20 (1961), 171–225. MR 136849, DOI 10.4064/sm-20-2-181-225
- C. J. Neugebauer, Differentiability almost everywhere, Proc. Amer. Math. Soc. 16 (1965), 1205–1210. MR 186767, DOI 10.1090/S0002-9939-1965-0186767-8
- C. J. Neugebauer, Symmetric and smooth functions of several variables, Math. Ann. 153 (1964), 285–292. MR 165046, DOI 10.1007/BF01362418
- E. M. Stein and A. Zygmund, On the differentiability of functions, Studia Math. 23 (1963/64), 247–283. MR 158955, DOI 10.4064/sm-23-3-247-283
- E. M. Stein, Singular integrals, harmonic functions, and differentiability properties of functions of several variables, Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966) Amer. Math. Soc., Providence, R.I., 1967, pp. 316–335. MR 0482394
- R. L. Wheeden, On the $n$-dimensional integral of Marcinkiewicz, J. Math. Mech. 14 (1965), 61–70. MR 0169980
Bibliographic Information
- © Copyright 1968 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 19 (1968), 130-134
- MSC: Primary 26.40
- DOI: https://doi.org/10.1090/S0002-9939-1968-0225944-7
- MathSciNet review: 0225944